Design and Implementation Choices for
Implementing Distributed CCA Frameworks

Rainer Schmidt*, Michael R. Head, Madhusudhan Govindarajuf, Michael J. Lewis' and Siegfried Benkner*
*Institute of Scientific Computing, University of Vienna, Austria
tGrid Computing Research Laboratory (GCRL), State University of New York (SUNY) at Binghamton

Abstract— The Common Component Architecture (CCA) spec-
ification is designed to provide a plug-and-play environment for
scientists to manage the complexity of large-scale scientific sim-
ulations. The same specification is used for the implementation
of sequential, parallel and distributed frameworks. The CCA
specification places minimal requirements on the framework
design, thus allowing various research groups to manage the
complexity of the underlying run-time systems in ways that match
the performance requirements of their target applications. In
this paper we discuss the various design choices, constraints and
complexities of implementing the CCA specification for high-
performance distributed applications. In particular, we focus
on the following CCA features: component instantiation and
connections, port type representations, Builder Service design,
choice of middleware, remote component communication, regis-
tration and discovery, client interface and QoS. We present a
discussion on the design space of distributed CCA frameworks
with specific examples from three concrete implementations:
VGE-CCA, XCAT-C++ and LegionCCA. '

I. INTRODUCTION

An important challenge in building and deploying high
performance scientific applications is providing a software
development model that abstracts the complexity of the run-
time environment and simplifies the task for scientists, al-
lowing them to focus just on the details of their particular
application. The software engineering benefits of component
based software have been widely described in the literature:
they facilitate encapsulation, reuse of existing components, and
the modular construction of programs, resulting in improved
application productivity. Component based systems also foster
code re-usability and provide high level abstractions to shield
users from low level details. They provide a manageable unit
for software testing, distribution and management, and reduce
the complexity of building large scale scientific applications,
which often require the integration of multiple numerical
libraries into a single application. Component architectures are
well-suited for scientists to build applications by composing
existing software components that exploit specialized comput-
ing and storage resources. The plug-and-play characteristic of
component architectures provides the ability to reuse compo-
nents in multiple applications, and serve performance needs by
allowing components to be swapped at run-time with others
that meet the required Quality of Service (QoS) metrics.

A consortium of university and national laboratory re-
searchers launched the “CCA Forum” [1] in 1998, to develop

'Supported in part by NSF grants IIS-0414981, CNS-0454298, ACI-
0133838, and DOE Grant DE-FG02-02ER25526.

a Common Component Architecture (CCA) specification for
large scale scientific computation. The DOE Office of Sci-
ence recognized CCA as one of its top 10 science achieve-
ments of 2002 [2]. The CCA specification defines the roles
and functionality of entities necessary for high performance
component-based application development. The specification
is designed from the perspective of the required behavior of
software components. However, the design and implementa-
tion of the framework and implementation of various features
is dependent on the target applications that each framework
is designed for. In this paper we focus on the mapping of the
CCA specification to distributed frameworks and discuss the
design space for various implementation choices including:
component instantiation and connections, port type represen-
tations, Builder Service design, choice of middleware, remote
component communication, registration and discovery, client
interface and QoS.

VGE-CCA [3] is a prototype implementation that provides
CCA-based programming capabilities on top of the Vienna
Grid Environment (VGE) [4]. VGE provides a Grid infrastruc-
ture for secure and automatic provision of compute-intensive
applications running on parallel hardware over standard Web
service technology. As a key feature, VGE supports negotiable
QoS support for time-critical service provision, which has been
utilized in the GEMSS [5] Project for the Grid provision of
advanced medical simulation services [6].

XCAT-C++ [7] is an implementation of CCA for dis-
tributed scientific applications. It uses a high-performance
multi-protocol library so that the most appropriate commu-
nication protocol is employed for each pair of interacting
components. Scientific applications can dynamically switch
to the most suitable communication protocol to maximize
effective throughput. The component layering imposes min-
imal overhead and application components can achieve highly
efficient throughput for the large data sets commonly used in
scientific computing.

Legion [8] has its own protocols and formats for remote
method invocation. Therefore, a CCA mapping to Legion
uses Legion’s method invocation, object identification, creation
mechanisms, and other services. LegionCCA is evolving to
include support for Web Services, in recognition of their
emergence as Grid computing standards.

In earlier work, we discussed the characteristics of dis-
tributed frameworks with XCAT-Java [9] and an early version
of LegionCCA as case studies [10]. We build on that work



by focusing on the design space and implementation details
of interesting distributed CCA features with the following as
case studies: VGE-CCA, XCAT-C++ and latest version of
LegionCCA.

The rest of the paper is organized as follows: we provide
an overview of the CCA specification and its key concepts
in Section II. Section III provides a brief introduction to the
three distributed CCA frameworks: VGE-CCA, XCAT-C++
and LegionCCA. In Section IV, we present the various design
features of distributed CCA frameworks and discuss them
with reference to specific implementation details of the three
frameworks. We discuss initial plans for an interoperability
standard for distributed CCA in Section V. Finally, we present
conclusions and pointers to future work in Section VI.

II. THE COMMON COMPONENT ARCHITECTURE

The Common Component Architecture (CCA) [1] specifi-
cation is an initiative to develop a common architecture for
building large-scale scientific applications. The CCA places
minimal requirements on components to facilitate the inte-
gration of existing scientific libraries into a CCA framework
and also to minimize the impact of the component layer
on performance. The component specification of the CCA is
expressed as a set of interfaces that precisely state the ex-
pected behavior for component-to-component and component-
to-framework interaction. The specification does not man-
date the use of any specific form of distributed or parallel
technology as the underlying communication architecture,
thereby ensuring that it does not preclude applicability to
serial, parallel, distributed or Grid systems. This approach
explicitly facilitates research groups to focus on utilizing the
same high level component specification for a wide range
of distributed and parallel applications including combustion
research, computational chemistry, remote data visualization
and global climate simulation [11]. The functionality provided
by a component may be used in a wide variety of applications.
Also, a number of different components can provide the same
functionality by implementing the same set of component in-
terfaces. Application scientists can thus choose from a palette
of available components and mix, match and experiment to
formulate effective solution strategies.

The CCA specification is specifically focused on the needs
of high performance applications that include direct-connect
communication between collocated components, performance
engineering, use of parallel and distributed components, inter-
operability between different CCA frameworks, and support
for languages commonly used by scientists such as Fortran.
The CCA specification targets the needs of high perfor-
mance applications and it is this focus on support for high-
performance that differentiates CCA from other component
models. The CCA promotes interoperability by requiring all
components to define their interfaces via a Scientific Interface
Definition Language (SIDL) [12]. The Babel toolkit [13] can
be used to generate glue code from SIDL to many program-
ming languages including C, C++, Java, Fortran and Python.
SIDL has been specifically designed for high performance

scientific applications. It explicitly supports complex num-
bers, dynamic multi-dimensional arrays, parallel attributes,
and communication directives. Babel [13] provides a suite of
tools to allow efficient interaction between two components
developed in different programming languages, but that are
co-located in the same process. The CCA Forum defines a
component as a software unit that interacts with other com-
ponents encapsulating well-defined functionality, or a set of
functionalities. A component can consist of multiple processes
(an MPI job, for example), or multiple components could all
be running within a single process. Some fundamental CCA
concepts include ports, services objects, component identifiers,
and the builder service. We discuss these concepts in detail as
well as their implementations in VGE-CCA, XCAT-C++, and
LegionCCA, in Section III.

Communication between CCA components takes place via
their ports, which follows a uses/provides design pattern. A
provides port is the public interface implemented by a com-
ponent. It can be referenced and used by other components.
It can also be viewed as the set of services that are exported
by the component. A uses port is a connection endpoint that
represents the set of functions that it needs to call. Port
descriptions for CCA components are provided using the SIDL
specification. CCA applications are composed by connecting
the uses port of one component to the provides port of one
another. The mechanism by which calls are transferred from
the uses port to the provides port of the connected component
is handled differently by each underlying framework.

III. EXAMPLE DISTRIBUTED CCA FRAMEWORKS

A fundamental requirement for distributed frameworks, as
opposed to all sequential and some parallel frameworks, is that
calls between components must be supported across address
spaces and machine boundaries. The framework must provide
necessary hooks to enable the instantiation of remote compo-
nents, efficient communication between components, manage-
ment of component binaries in a heterogeneous environment,
and tools to allow composition of various components into
applications. Furthermore, registration and discovery of com-
ponents is also required for components to dynamically search
and connect to other components.

Distributed frameworks differ in the design and implemen-
tation of these features. In this section we provide an introduc-
tion to three distributed CCA frameworks and highlight their
key features.

A. VGE-CCA

The VGE-CCA prototype framework implements the CCA
specification on top of a Web services based Grid infrastruc-
ture. The Vienna Grid Environment (VGE) provides a generic
service provision framework that encapsulates native HPC
applications available on clusters or other parallel hardware.
It offers a common set of operations for job execution, job
monitoring, data staging, error recovery and application-level
quality of service support.



The idea behind this work is to integrate Grid and Web
services with a component model for remote, peer-based
application composition, coordination, and execution. A key
design goal is the preservation of the service-oriented archi-
tecture of the environment. The system therefore provides
parts of the CCA framework functionality as common Web
services to clients and components. The framework also serves
as a component registry and maintains a proxy repository
facilitating dynamic discover and access of Grid components.
For remote communication the system uses SOAP-RPC via
HTTP and utilizes SOAP attachments for large data transfers.

A significant design aspect of a Grid component framework
is the way components are addressed. Services in a Grid
may be entirely stateless (e.g. providing Certificate Revocation
Lists) and addressed by a Web service endpoint or may provide
access to a remote resource (e.g. using WSRF [14]) requiring
additional addressing information. VGE services work based
on a session mechanism that maps a conversational identifier
to an individual client application.

To address time-critical Grid applications, such as medi-
cal simulations, VGE services provide application-level QoS
support. Clients may dynamically negotiate various QoS
guarantees (e.g. response time, price) in the form of Web
Service Level Agreements (WSLA [15]) with VGE services.
The VGE-CCA Builder service integrates this mechanism by
supporting QoS related component attributes that have to be
supplied by the user. These QoS descriptions include a descrip-
tor containing meta-data about a specific service request (e.g.
mesh size, accuracy) and a document specifying the required
QoS constraints (e.g. response time). The framework utilizes
a negotiation-broker service to locate and create a component
of a certain application-level quality at run-time.

B. XCAT-C++

XCAT-C++ is an implementation of the CCA specification
that is designed for distributed scientific applications. XCAT-
C++’s design is modular, so that the capabilities of the system
can be easily extended. This allows specialized components,
developed by different institutions and stored in a common
repository, to be seamlessly combined to form distributed
applications that address domain specific needs. In previous
work, we showed that instead of extending a single commu-
nications subsystem to handle the wide range of scientific
computing requirements, a more effective solution is to use
multiple communication protocols [16], [17]. When additional
performance is needed, a multi-protocol approach allows a
faster, more specialized protocol to be dynamically inserted to
move data. XCAT-C++ uses a multi-protocol communication
library so that the appropriate communication protocol is
employed for each pair of interacting components. It also
provides the capability at the application level to seamlessly
and dynamically switch to a more suitable communication
protocol to maximize effective throughput. The component
encapsulation adds additional levels of indirection in the
execution stack of every component call. However, the over-
head due to the component layering is minimal (two virtual

function calls) and does not impact the overall performance
of the distributed application. Each XCAT-C++ component
can interact with endpoints that are compliant with Grid Web
services standards. XCAT-C++ has a flexible, extensible and
powerful code generation toolkit that can generate the transport
protocol specific code and shield away the complexity of the
run-time specific details in stubs and skeletons.

C. LegionCCA

The LegionCCA approach to implementing the CCA speci-
fication over Legion, is to model CCA components as Legion
objects. Each CCA object gets its own address space, name,
and interface within Legion. Legion objects that serve as
CCA components are linked against a LegionCCA library,
which gives them the added functionality to run within the
CCA framework atop Legion. This library implements the API
that is defined in the CCA specification, thereby making its
services and functionality available to applications program-
mers from within the components they build. The LegionCCA
library contains implementations of important CCA types,
including ComponentID and Ports, a Services Object and a
builder service for the component, and a connection table
that describes how the component is attached to others in the
framework. Behind these CCA-defined interfaces, LegionCCA
uses the mechanisms enabled by the Legion run-time library
(LRTL) to carry out their definition. For example, the LRTL

o implements a Legion Object Identifier (LOID) type,

which is used as part of a CCA component ID to identify
and find objects/components

« automatically binds named LOIDs to process addresses,

and uses a sockets-based communication library to deliver
messages to remote objects and services

« contains client-side stub routines that allow callers to in-

voke remote Legion services, including those for creating,
discovering, and destroying objects (components)

This approach—implementing CCA components as Legion
objects—achieves the benefits of exporting a standard compo-
nent framework to applications developers, without having to
reinvent and re-implement every Grid and middleware service
for this framework to run in a Grid environment. Thus, the
design and implementation choices described throughout the
rest of this paper are heavily influenced by the mechanisms
and solutions of the Legion version 1.8 implementation. More
details about Legion can be found in other papers [8], [18].

IV. DESIGN AND IMPLEMENTATION

In this section, we present design choices and implementa-
tion aspects for distributed CCA framework implementations.
The design space we identify, targets CCA implementations
built upon Grid and Web service technologies. We present a
case study using three concrete implementations, VGE-CCA,
XCAT-C++ and LegionCCA. We examine the implementation
of fundamental CCA concepts including component identifi-
cation, ports, connections, and framework as well as features
relevant for Grid computing including middleware support,
remote job execution and client-sided programming interface.



A. Key Design Choices

1) ComponentID: The ComponentID is an opaque handle
to a component that can be used to introspect the component
and obtain information on the list of available ports and types.
The ComponentID also plays an important role in component
assembly. It is typically implemented as a global pointer to
the Services object of a CCA component.

¢ VGE-CCA implements a one-to-one relationship between
Web services and CCA components. Every Web service
port is mapped to a CCA provides port, dependencies on
other services are modeled as CCA uses ports. Services
are remotely accessed using local proxy objects that
encapsulate interaction details and SOAP messaging. The
ComponentID is designed in a way that it can be used by
a proxy to identify a particular service or an application
provided by a Web service. The ComponentID comprises
a Web service endpoint and a conversational identifier, if
supported by the remote service. In its serialized form, the
ComponentID is represented as a service endpoint option-
ally containing an URL encoded session identifier. The
ComponentID provides sufficient information to detect
co-location of components, which can be exploited using

directly access a service.

In the XCAT-C++ framework, ports are instantiated by
factories that are specialized for each port type. These
factories are generated during the code-generation phase
for each component. Whenever a port is registered via
the standard CCA API, a local object is created that
is specialized for that port type. The stub-skeleton code
automatically converts a provides port into its on-the-wire
representation whenever it is passed as a parameter in a
method call between components.

LegionCCA manages its uses and provides ports via
tables in the implementation of the Services object.
The additions and deletions of ports to the component
are recorded in these tables. Access to the uses port
information is however restricted to local calls. Legion
supports both function identifiers and interfaces. Legion
objects have the capability to obtain information on the
list of methods that are supported by any other object
in the Legion Grid. The existing Legion C++ classes,
LegionFunctionID and LegionInterface, are used by the
Services object implementation to gain access to the
Legion library for serialization of calls on the CCA ports.

native method calls for inter-component communication
instead of processing the whole SOAP protocol stack.
In XCAT-C++, the ComponentID has been designed as an
object with a remote interface. Since XCAT-C++ uses the
proteus [16] library for communication, the Componen-
tID is represented as a string-encoded proteus endpoint
when it is transmitted on the wire. The information in
the endpoint that represents the ComponentID includes
information on the host, port, communication protocol
and a globally unique ID.

Each LegionCCA ComponentID consists of three ele-
ments: type, string name, and handle. Legion LOID is
used to serve as a unique identifier for the component
in the Legion Grid. The string name is resolved within
Legion’s context space—a global namespace of user-
defined strings—and bound to the LOID of the Legion
object that implements the specified component. The
Legion library creates a local proxy for each LOID.
Methods invoked on this proxy are transported to the
remote component by the Legion library.

3) BuilderService: The CCA specification states that the
responsibility of the Builder Service includes creation, con-
nection, disconnection, and destruction of components. The
same Builder Service API is used by all sequential, distributed
and parallel CCA frameworks. However, each framework
implements these features in a unique way.

o Using the VGE-CCA Builder Service, components can be
introspected to discover the ports they provide and use.
The ports a Web service exposes are modeled as CCA
provides ports and may be accessed by clients or other
components via uses ports implemented as stubs/proxies.
A component registers its ports with descriptors con-
taining information required to discover and invoke its
services (e.g. interface descriptions, associated properties,
proxy class) with a common “framework Web service”.
The remote framework also maintains a proxy repository
that is accessed by clients in order to generate appropriate
uses ports.

e Each XCAT-C++ component has a BuilderService by
default. XCAT-C++ has a services based architecture, and

2) CCA Ports: CCA components exchange data via their
ports. The design and implementation of the port API, usually
specified in SIDL, is different in each framework.

e The VGE-CCA Services object allows components to
register descriptions of the port types, that they provide
and use, with a common “framework Web service”. A
port description contains the ComponentID, port name,
method signatures, and optionally a list of properties.
Port objects can be used via the Builder service API to
remotely interconnect components that exhibit a pair of
complementary uses and provides ports (using a remote
connection interface). Furthermore, a Web service proxy
object can be retrieved from a provides port object to

consequently each of the BuilderService methods can
be implemented by a standard Grid/distributed service
for creation, connection, disconnection and destruction.
XCAT-C++ just wraps implementations of these services
with CCA component layering. The creation service is
based on “SSH”, and current work is directed towards
incorporating the GRAM [19] library for authenticated
launch on Grid resources.

LegionCCA maps all methods in the BuilderService API
to corresponding calls in the Legion library. This is
possible as Legion maps objects to components, and
many of its features directly match those required by the
CCA specification. The createObject and destroyObject



methods are used to create and destroy components
respectively.

4) Component Creation and Connection: The requirement
that distributed applications span multiple address spaces
implies that frameworks must have the capability to in-
stantiate components on remote machines. Each component
may need many environment variables to be set to appro-
priate values for its execution, including JAVA_HOME and
LD_LIBRARY _PATH. The framework also needs to be aware
of the various architectures used in a heterogeneous environ-
ment to ensure that the right binary format is used on the
component host machine. In some cases it is also required for
the component binaries to be stored to, replicated, or fetched
from a remote location.

A standard API for connecting ports is necessary to facilitate
the assembly of components into a distributed application via
standard builder tools including scripts, GUIs and portals.
For a connection to take place between two components in
a distributed framework, a remote reference to the provides
port of the first component needs to be placed in the table
associated with the uses port of the other component.

e VGE-CCA does not create new Web services by re-
motely starting a Web service container or by using a
service factory as is common in OGSI implementations.
Instead, the framework makes existing Grid/Web services
accessible by means of the CCA Builder service. For
stateless Web services, create generates a local com-
ponent representation that refers to a service matching
the component description. VGE services provide access
to remote applications by additionally incorporating an
session identifier that is mapped to particular client re-
quests. The creation of a VGE component may coincide
with a QoS negotiation resulting in WSLA contract and
advance resource reservation. This mechanism allows the
component to provide certain (application level) quality
guarantees.

In VGE-CCA, applications are constructed from abstract
component descriptions that are mapped to available
resources at run-time. Components can therefore be con-
nected by their provides and uses ports. Connections are
accessed within the components through corresponding
uses ports. If a component connection is time/state depen-
dent it may be required that the interaction is controlled
by the client application. A component may therefore
make a connection endpoint remotely accessible over a
provides port (e.g. data push).

If a client invokes the connect() method of a remote
component, an interface descriptor identifying the cor-
responding uses and provides ports as well as the target
Component]D is passed and stored at the source compo-
nent’s connection table. Ports are distinguished logically
by their interface type but can be cast and connected to
any port with a similar method signature. This allows a
component to register multiple uses ports of the same type
(e.g. a database port) that can be connected to different

service ports. A component may also simply use the local
Builder service to create and access remote components
in a transparent manner.

In XCAT-C++, the “Creation” and “Connection” ser-
vices are implemented as two separate modules and the
BuilderService provides a common interface for these
services. When the BuilderService is used to connect two
components, XCAT-C++ uses non-CCA calls between
components to retrieve the specific provides port and
place it in the internal table of the component with
the uses port. These calls are made using the commu-
nication API provided by the proteus library, and the
details of these calls are transparent to the user. Unlike,
LegionCCA, XCAT-C++ does not maintain a central table
to track all the connections in the application. Current
work in XCAT-C++ is focused on incorporating an event
system to keep track of the state of creation, connection
and deletion operations.

LegionCCA objects export their interfaces to other ob-
jects through explicit object-mandatory functions that are
guaranteed to be in the interface of all Legion objects.
That is, any object or service running within Legion can
call the getInterface() function on any other object. This
facility means that half of the necessary introspection
functionality—the half for provides ports—has direct
built-in support from Legion. The CCALegion library
needs to explicitly maintain Uses ports information, how-
ever, because the functions that a Legion object calls are
not readily available to other objects at run time.

A connection is established by retrieving a handle for
the remote provides port and placing it in the appropriate
table entry of the corresponding uses port in the other
component. Each component has a table that contains
information about the connections of all its provides and
uses ports.

5) Communicating with Remote Components:

e VGE has been mainly implemented in Java and relies

on standard Web Service technologies such as WSDL,
SOAP/HTTP, and WS-Security. It utilizes the open-
source frameworks, Tomcat and Axis, for service hosting
and deployment. For large file transfers VGE utilizes
SOAP attachments. The VGE-CCA client API provides
mechanisms to facilitate dynamic retrieval of Web service
proxies from a remote repository. The component frame-
work currently uses custom SOAP serializers, based on
Java serialization and Base64 encoding, to transfer CCA
specific data types (e.g. port, services) over the network.
XML-based serialization mechanisms for these data types
will be added in future versions.

Due to the diverse communication characteristics of
distributed scientific applications, XCAT-C++ uses the
proteus multi-protocol library as the communication sub-
strate in the framework. Proteus currently has support for
two protocols: (1) XBS [20], an efficient streaming binary
protocol; and (2) XSOAP, a C++-based implementation



of the SOAP specification. Communication between two
XCAT-C++ components can dynamically switch on a per-
call basis. Communication modules, adhering to the pro-
teus API, can also be dynamically loaded. Current work
is focused on using the proteus communication library
as the basis for interoperable communication between
different CCA frameworks [21], [22].

In practice, communication between Legion objects, and
therefore LegionCCA components, is carried out over a
data delivery layer based on Unix sockets. This layer
itself is a replaceable feature of the Legion library;
implementations for TCP-based and UDP-based commu-
nication could be replaced by any other mechanism that
delivers data from one process that represents a Legion
object, to another. The particular data delivery layer in use
must match with the object identifier type that is used for
the low-level name of a running Legion object. Sockets-
based object identifiers contain pairs consisting of IP
addresses and port numbers. Since this object id type
can itself be replaced by a user-defined type (containing
a URL, for example), and since the global name of the
object is a location-independent LOID that is mapped
down to the object address, the Unix sockets data delivery
layer could be replaced.

6) Implementation of the Client API:
e VGE-CCA provides a client-side Java API that imple-

ments the CCA Builder service concepts. Components
may be described and created based on the Compo-
nentID or an abstract component description. Applicable
services are located and selected at run-time using the
component framework service. A component description
comprises the set of required interfaces the component
contains as part of the CCA specification. Furthermore,
the component may be associated with meta-data at-
tributes assigned to predefined constants (e.g. service
name, application class, or QoS attributes). A component
instance can be introspected on the ports it provides as
well as on associated meta information. Connecting pairs
of compliant uses/provides ports allows establishment
of peer connections between the services. Clients may
directly access component ports to control time and state
dependent interactions (e.g. retrieve application status,
stage output data). A mechanism is therefore provided to
generate a proxy object of a desired interface type based
on a provides port. At run-time, the client environment
invokes a service using a proxy class associated with
the provides port. In case of an invocation failure or if
the required libraries are not accessible locally, the client
environment tries to retrieve a proxy implementation from
the remote repository using a dynamic proxy mechanism.
Often times, scientists repeatedly run the same simulation
by changing just some of the execution parameters. For
such cases, a scripting interface to the CCA API is in-
valuable. XCAT-C++ provides a Python interface enabled
by the Simple Wrapper Interface Generator (SWIG) [23]

to translate calls between Python and the C++ library of
XCAT-C++. Currently, the XCAT-C++ team is exploring
the use of this scripting interface in incorporating XCAT-
C++ components in work-flow specifications and portal
environments.

o An interface one level higher than the data delivery
layer, described in Section IV-A.5 above, implements the
Legion method invocation protocol, which defines how
parameters and return values are packed and delivered,
how remote functions are identified, and how processes
are named, among other things. This layer is abstracted
within client code by a local data structure called a
“program graph.” A Legion program graph abstracts one
or more run-time invocations, by holding the name of
the function to be called, all the necessary parameters,
and enough information to find and deliver all resulting
return values. Program graphs are intended to be built
up from within automatically generated code. Legion
contains a stub generator that builds client-side stubs
for calls on remote Legion objects (through program
graphs), given remote object interfaces. LegionCCA adds
support for expressing these remote interfaces in CCA-
based SIDL. The Legion method invocation layer can also
be generated by Legion-targeting compilers of higher-
level parallel or Grid-enabled languages, including, for
example, Mentat.

7) Quality of Service:

o VGE has been designed to support a multi-phase service
access model that may comprise an administrative phase,
a QoS negotiation phase, and the application execution
phase. Using the VGE QoS module, parallel applica-
tions may be provided as dynamically configurable Grid
services, which, depending on the requirements of a
client or client application, may be executed on many
processors in short time but for a higher price, or on a
few processors with a lower price. The VGE-CCA client
environment integrates QoS support by providing means
for qualitatively describing a VGE component, which are
dynamically selected by the component framework using
a negotiation-broker service.

¢ In XCAT-C++, a common-denominator protocol can be
used to negotiate the use of the most optimized protocol
available with both the frameworks. The negotiation and
switch to the appropriate protocol can be handled by the
framework and remain transparent to the application. A
similar design can be used by LegionCCA, which has
a successfully incorporated the proteus library with the
Legion communication system [21].

V. INTEROPERABILITY BETWEEN DISTRIBUTED CCA
FRAMEWORKS

To leverage the strengths of each distributed CCA frame-
work, it is important to develop an interoperability standard
to facilitate the design and development of applications that
can transparently span multiple frameworks. The format and
implementation of inter-component calls are not prescribed by



the CCA specification, since no single communication protocol
suits all applications. By not mandating such implementation
details, the CCA specification provides considerable flexibility
to each framework to customize the implementation in ac-
cordance with the needs of target applications. However, as
a result, an interoperability standard will require a strategy
outside of the CCA. Elsewhere [22], we discuss five require-
ments for component framework interoperability and three
approaches to meet them. For each pair of communicating
frameworks, the appropriate approach must be applied for all
the requirements. This effectively defines a design space for
framework interoperability approaches.

The important interoperability requirements include (1) de-
scription and specification of the port interface, (2) specifica-
tion of the communication protocol, (3) mechanism for naming
interoperability for both components and interfaces/ports, (4)
standard for discovery of distributed components, and (5)
a common standard for creation of components within a
framework.

These requirements can be met in several ways. We have
classified possible approaches into three categories.

« an interoperability standard that explicitly specifies the
interfaces and protocols that all implementations are
required to follow,

e adaptors that can translate objects and other entities of
one framework into those of another, and

o proxies that can help span frameworks by providing
representatives of one framework in another.

All three frameworks, VGE, XCAT-C++, and LegionCCA
have the capability to communicate with Web services. This
common characteristic makes the use of WSDL documents
an easy and effective choice for a common way to specify
and describe interfaces. However, given that CCA ports are
specified in SIDL, it is important to develop a mapping
between SIDL and WSDL descriptions, for interfaces and data
types.

The SOAP protocol has emerged as the standard Web
services communication protocol. SOAP has many features
that make it appropriate for interoperable data exchange in
heterogeneous environments. SOAP can therefore serve as
the default communication protocol between the distributed
CCA frameworks. Two communicating frameworks can first
exchange information on their supported protocols via mes-
sages in the mutually understood SOAP protocol. After the
initial handshake, further communication can then take place
in a high performance communication substrate that is agreed
upon during the handshake.

In distributed frameworks, specialized handles serve as
remote pointers (also called global pointers) to provide access
to objects that live in remote address spaces. Apart from
remote pointers, each framework also has the notion of a
global namespace, making entity names understood in every
component of the framework. This also allows data types
that are received on the wire to be mapped to local objects
within the receiving process. For applications to span different
frameworks, well known registries must be used to convert

remote references from the format of one framework to that of
the other. Also, for each pair of frameworks, adapters/proxies
must be built to convert data types from the sending to the
receiving framework.

Our study on a common standard for discovery and creation
is in the intial stages and is the subject of active future
work. We plan to build on the ideas mentioned in this section
to develop a prototype system that exhibits interoperability
between different distributed CCA frameworks, and present it
to the CCA community for feedback.

VI. CONCLUSION

Implementing distributed and Grid-based component frame-
works imposes special constraints and requirements on the
system design. A framework needs to support mechanisms for
remote invocation and remote creation as applications typically
span multiple address spaces. Inter-component communication
must be accomplished remotely and be able to cross address
spaces, machine boundaries, and administrative domains. Fur-
thermore, components should be able to self-register with the
component framework and allow dynamic discovery. XCAT-
C++, LegionCCA and the VGE component framework are
built upon Web service and Grid technologies. In this paper,
we have shown how the high-level CCA specification can
be applied to distributed computational environments. We
presented key design choices for Web services and Grid-based
frameworks. The design and implementation choices of CCA
features decides the kind of applications that each framework
is suited to support. In future work, we plan to study the
performance tradeoff of these frameworks for representative
scientific application workloads

REFERENCES

[1] CCA Forum. Common Component Architecture Forum. [Online].
Available: {http://www.cca-forum.org}

[2] Office of Science, Department of Energy,
Achievements in 2002.”

[3] R. Schmidt, S. Benkner, I. Brandic, and G. Engelbrecht, “Component
based Applications Programming within a Service-Oriented Grid Envi-
ronment,” Workshop on Component Models and Frameworks in High
Performance Computing (CompFrame 2005), Atlanta GA, June 2005.

[4] S. Benkner, I. Brandic, G. Engelbrecht, and R. Schmidt, “VGE - A
Service-Oriented Grid Environment for On-Demand Supercomputing,”
in Proceedings of the Fifth IEEE/ACM International Workshop on Grid
Computing (Grid 2004), November Pittsburgh, PA, USA, November
2004.

[5] The GEMSS Project: Grid-Enabled Medical Simulation Services.
(2005) EU IST Project, IST-2001-37153. [Online]. Available: {http:
/lwww.gemss.de/}

[6] S. Benkner, G. Berti, G. Engelbrecht, J. Fingberg, G. Kohring, S. Mid-
dleton, and R. Schmidt, “GEMSS: Grid Infrastructure for Medical
Service Provision,” Journal of Methods of Information in Medicine, Vol.
44, 2005.

[71 M. Govindaraju, M. R. Head, and K. Chiu, “XCAT-C++: Design and
Performance of a Distributed CCA Framework,” The 12th Annual
IEEE International Conference on High Performance Computing (HiPC)
2005, Goa, India, December 18-21.

[8] M. Lewis, A. Ferrari, M. Humphrey, J. Karpovich, M. Morgan, A. Na-
trajan, A. Nguyen-Tuong, G. Wasson, and A. Grimshaw, “Support for
extensibility and site autonomy in the legion grid system object model,”
Journal of Parallel and Distributed Computing, vol. 63, pp. (525-538),
2003.

“Top 10 DOE Science



[9]

[10]

(11]

[12]

[13]

[14]

[15]

M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski, D. Gannon, and
R. Bramley, “Merging the cca component model with the ogsi frame-
work,” in Proceedings of CCGrid2003, 3rd International Symposium on
Cluster Computing and the Grid, Tokyo, Japan, May 12-15 2003, pp.
182-189.

M. Govindaraju, H. Bari, and M. J. Lewis, “Design of Distributed
Component Frameworks for Computational Grids,” in Proceedings of
the International Conference on Communications in Computing (CIC),
June 2004.

D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand, K. Chiu,
T. L. Dahlgren, K. Damevski, W. R. Elwasif, T. G. W. Epperly,
M. Govindaraju, D. S. Katz, J. A. Kohl, M. Krishnan, G. Kumfert,
J. W. Larson, S. Lefantzi, M. J. Lewis, A. D. Malony, L. C. Mclnnes,
J. Nieplocha, B. Norris, S. G. Parker, J. Ray, S. Shende, T. L. Windus,
and S. Zhou, “A component architecture for high-performance scientific
computing,” Intl. J. High-Perf. Computing Appl., 2006, submitted to
ACTS Collection special issue.

S. Kohn, G. Kumfert, J. Painter, and C. Ribbens, “Divorcing Language
Dependencies from a Scientific Software Library,” in Proceedings of
10th SIAM Conference on Parallel Processing, Portsmouth, VA, March
12-14, 2001.

N. Elliot, S. Kohn, and B. Smolinski, “Language Interoperability for
High-Performance Parallel Scientific Components,” in International
Symposium on Computing in Object-Oriented Parallel Environments
(ISCOPE 1999), San Francisco, CA, September 29 - October 2nd.
Globus Alliance, IBM and HP . (2004) The WS-Resource Framework.
[Online]. Available: {http://www.globus.org/wsrf/}

Web Service Level Agreement (WSLA) Language Specification. (IBM

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

2001-2003). [Online]. Available: {http://www.research.ibm.com/wsla/
WSLASpecV1-20030128.pdf}

K. Chiu, M. Govindaraju, and D. Gannon, “The Proteus Multiprotocol
Library,” in Proceedings of Supercomputing 2002, November 2002.

M. Govindaraju, A. Slominski, V. Choppella, R. Bramley, and D. Gan-
non, “Requirements for and Evaluation of RMI Protocols for Scientific
Computing,” in Proceedings of SuperComputing 2000, November 2000.
A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey, “Legion: An
operating system for wide-area computing,” I[EEE Computer, vol. 32,
no. (5), 1999.

G. von Laszewski, J. Gawor, S. Krishnan, and K. Jackson, Grid
Computing: Making the Global Infrastructure a Reality. Wiley, 2003,
ch. 25, Commodity Grid Kits - Middleware for Building Grid Computing
Environments.

K. Chiu, “XBS: A streaming binary serializer for high performance com-
puting,” in Proceedings of the High Performance Computing Symposium
2004, 2004.

D. C. Erdil, K. Chiu, M. Govindaraju, and M. J. Lewis, “A Proteus-
Mediated Communications Substrate for LegionCCA and XCAT-C++,”
Workshop on Component Models and Frameworks in High Performance
Computing (CompFrame 2005), Atlanta GA, June 2005.

M. J. Lewis, M. Govindaraju, and K. Chiu, “Exploring the Design
Space for CCA Framework Interoperability Approaches,” Workshop on
Component Models and Frameworks in High Performance Computing
(CompFrame 2005), Atlanta GA, June 2005.

SWIG. (1997) Simplified Wrapper and Interface Generator. [Online].
Available: {http://www.swig.org}



