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ABSTRACT
This paper describes the scalable e-archiving repository sys-
tem developed in the context of the E-ARK project. The
system is built using a stack of widely used technologies that
are known from areas such as search engine development, in-
formation retrieval and data-intensive computing, enabling
efficient storage and processing of large volumes of data. The
E-ARK Integrated Platform Reference Implementation Pro-
totype takes advantage of these technologies and implements
an OAIS-oriented repository system for creating, archiving,
and accessing data as information packages. The system
consists of software components including an efficient file
handling infrastructure, a configurable and scalable ingest
system, a powerful full-text-based search server, and a dis-
tributed repository providing file-level random access. This
paper gives an overview of the architecture and technical
components that have been used to build the prototype.
Furthermore, the paper provides experimental results and
gives directions for future work.

CCS Concepts
•Information systems→ Data management systems;
•Applied computing → Document searching;

Keywords
OAIS; archiving; repository; scalability; distributed systems;
Hadoop

1. INTRODUCTION
In recent years, considerable research and development ef-

forts dealt with managing the growing amount of digital data
that is being produced in science, information technology,
and many other areas of today’s society [9]. The constant
increase in the number of digital publications, governmental
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records, or digitized materials is challenging for the develop-
ment of procedures and information systems for libraries and
archives [10]. An effort to cope with preservation workflows
that need to be executed on large volumes of digital mate-
rials has been made by the SCAPE project [12], which has
developed a platform that enables users to execute such pro-
cesses using computer clusters and data-intensive computing
techniques [19]. The E-ARK Integrated Platform Reference
Implementation Prototype1 continues this work by setting
up a scalable repository system for archival institutions.

The integrated prototype has been developed in the con-
text of the E-ARK project, an ongoing 3-year multinational
research project co-funded by the European Commission’s
ICT Policy Support Program (PSP) within the Competitive-
ness and Innovation Framework Program (CIP). The pur-
pose of the integrated prototype is to demonstrate how open
source solutions for distributed storage and processing can
be combined to build a scalable repository for memory or-
ganizations. The aim is to show that this approach is, in
general, suitable to address the need for enhancing existing
archiving systems in providing access to very large, contin-
uously growing, and heterogeneous digital object collections
in archival institutions.

In its first project year, E-ARK has conducted a GAP
analysis among archival institutions identifying user require-
ments for access services2. The study investigated the cur-
rent landscape of archival solutions regarding the available
access components and identified gaps and requirements from
the perspective of national archives, 3rd party users, as well
as content providers. The study identified a major gap in
the identification process where users browse and search col-
lections to identify material of potential interest. It stated
that a lack of comprehensive metadata available and indexed
compromises the performance and efficiency of the finding
aids, which directly impacts the user experience and the
user’s access to the archival holdings in their entirety.

To fill this gap, E-ARK makes use of s scalable reposi-
tory system and search infrastructure for archived content.
The goal is not necessarily to replace existing systems but to
augment these components (like archival catalogues) with a
“content repository” that can be searched based on a full
text index. The content repository concentrates on fine

1in the following shortly called “integrated prototype”.
2http://www.eark-project.com/resources/project-
deliverables/3-d51-e-ark-gap-report



Figure 1: System Components and their interactions
used by the integrated prototype for implementing
the Faceted Query Interface and API.

grained search within information packages and random ac-
cess at the file-level rather than providing search based on
selected metadata elements and package-based access. The
integrated prototype developed in this context employs scal-
able (cluster) technology as scalability issues must be taken
into account when operating a detailed content-based search
facility, providing an infrastructure for creating, ingesting,
searching, and accessing E-ARK information packages. Scal-
ability is accomplished by making use of technologies like the
Apache Hadoop framework3, NGDATA’s Lily repository4,
and the Apache SolR search server5.

The workflow implemented by the integrated prototype
for data ingest, storage, and access is based on the ISO
Reference Model for an Open Archival Information System
(OAIS) [3]. This means that data is received in form of Sub-
mission Information Packages (SIPs) which are transformed
into Archival Information Packages (AIPs) and transferred
to the archive. Upon client request the selected content of
the AIPs can be retrieved from the archive and repacked
as Dissemination Information Packages (DIPs) for delivery.
The repository supports facet search based on full-text and
extracted metadata (e.g. MIME-type, size, name of the files
contained within the information packages). This is accom-
plished by executing information extraction and transforma-
tion processes upon transfer of the SIP to the archive (SIP
to AIP conversion/ingest).

2. BACKEND ARCHITECTURE

2.1 Overview
Figure 1 provides an overview of the major system com-

ponents that are employed by the backend of the integrated
prototype. The query interface and API provided by the
search server must be backed by software components and
generated data products in order to provide the desired func-
tionality. Here, we give an overview and describe their in-
teractions.

3http://hadoop.apache.org/
4https://github.com/NGDATA/lilyproject
5http://lucene.apache.org/solr/

2.2 Staging Area
The staging area is a file-system based storage location

provided in combination with the data management com-
ponent of the integrated prototype. The staging area is
accessible to other components based on an API allowing
these components to deposit information packages for in-
gestion into the content repository (as shown in Figure 1).
While in principle any file system could be employed as stag-
ing area, the integrated prototype makes use of the Hadoop
File System (HDFS) for performance, scalability and relia-
bility reasons. The staging area is in the first place used to
access the information packages during the repository ingest
workflow but can also be employed to serve other purposes
like (package-based) access.

2.3 Repository
The integrated prototype makes use of NGDATA’s Lily

project which is employed as a content repository. The in-
formation packages residing on the staging area are ingested
into the repository where they are stored in the form of
structured repository records, as described in section 3. The
repository interacts with the search server which reads and
indexes the repository records as well as with client compo-
nents which access data items on a file or record level.

2.4 Search Server
The generation and/or update of the index provided by

the search server can be triggered by the repository compo-
nent in case records are added, deleted, or modified. The in-
dex provides the necessary data structure to evaluate search
queries and to return results which point to records stored
in the repository. The index and search functionality is pro-
vided by the search server through an HTTP interface. The
integrated prototype makes use of Apache Solr as the search
server which can be well integrated with Lily and its under-
lying database HBase. The query interface is provided by a
defined REST API through Apache Solr which is customized
based on the individual structure of the repository records.
For supporting multiple and heterogeneous collections, it is
possible to generate different indexes for different datasets
maintained by the repository.

2.5 Search, Access, and Display Components
These components interact with the search server and the

repository as clients. Specific archival user interface and ac-
cess components (e.g. required for DIP creation) have been
implemented in the context of the E-ARK Web project, as
described in section 5.2. The protocol for interacting with
the query interface is however independent of the employed
client component and ultimately allows for the integration
with an external user interface. Client components typically
provide a graphical representation of the query language and
facets provided by the search server. When a query is sub-
mitted to the search server, it is evaluated against the in-
dex. The search server subsequently returns a ranked list of
record references (and optionally content fragments) to the
client. Besides interfaces required for searching, the repos-
itory also provides an access service providing clients with
random access to data on a file-level, based on references,
which can retrieved by an HTTP request, issued for example
through the client application.



Figure 2: Conceptual workflow for ingestion and in-
dexing of information packages to the content repos-
itory provided by the integrated prototype.

3. CONCEPTUAL WORKFLOW
Figure 2 shows the conceptual workflow for ingesting data

items residing on the staging area (for example using the
Hadoop File system) into the content repository. Practi-
cally, this means that after the repository has been popu-
lated and/or updated a full text index is generated and/or
updated respectively.

The integrated prototype implements the ingest workflow
for ingesting information packages into the content reposi-
tory on a file-based level which is in contrast to ingesting
on a package level. The ingest workflow is implemented in
a way that every item (or file) contained within an infor-
mation package is considered a record. In the repository,
packages are represented as a set of records sharing a com-
mon identifier.

3.1 Record extraction and ingest
Once the ingest process is started, the workflow iterates

over all files contained within the individual information
packages. Each file extracted from the information pack-
age is processed separately. The exact implementation of
the processing step is highly depending on the data set and
institutional requirements. Examples that have been imple-
mented as part of the integrated prototype include the ex-
traction of text portions, structure, and context information
from web, office, or XML documents, file size calculation,
MIME-type identification, and checksums.

The data extracted from an individual file is subsequently
stored into a data structure, called a record , which can be
ingested into the repository. The individual structure of a
record can be customized depending on data and institu-
tional needs. A record for a newspaper article, for example,
could contain fields like author, title, body, publisher, and
publishing date. Fields of a record are “typed” which means
they can be restricted to certain data types like for example
numbers, string, or date. A record identifier that encodes
the identifier of the package as well as the location of the
original file within the package is generated automatically.
Once a record is created, it is ingested into the content repos-
itory. As records organize information in a structured way,
they can be interpreted by the repository and consequently
stored in a (structured) database.

3.2 Full-text index generation
The E-ARK integrated prototype aims at providing a facet

query interface based on full-text indexing in addition to the
rather limited search mechanisms provided through database
indexing. The full-text search functionality is provided through
a search server (like Apache Solr), which relies on a previ-
ously generated full-text index (using Apache Lucene). The
integrated prototype makes use of a configuration file (called
a schema) that provides a detailed specification of the in-
dexing process. This controls for example which parts of a

Master Slave
HDFS NameNode DataNode
MapReduce JobTracker TaskTracker
HBase HBase Master Region Server

Table 1: Daemons running on the cluster.

record should be indexed, available fields, and the informa-
tion that should be stored with the index (e.g. only docu-
ment references and/or also content portions).

After new content has been ingested and/or updated the
repository index should be generated or updated at peri-
odic intervals. The integrated prototype provides specific
commands for triggering the creation of the index from the
records available within the repository. Depending on the
volume of content, indexing as well as ingestion can be-
come very resource and time consuming processes. Both
processes have therefore been implemented as parallel ap-
plications that can take advantage of a computer cluster to
scale out for large data sets. Within the E-ARK integrated
prototype, indexing and ingestion have been deployed on a
cluster at AIT, providing a total of 48 CPU-cores. The gen-
erated index is made available by the search server as a query
interface enabling a client to formulate and execute queries
against the index, compose complex queries based on facets,
and rank them based on different characteristics. It is how-
ever important to note that although a defined query API is
exposed by the integrated prototype, the API is highly con-
figurable and customizable with respect to the parameters
it accepts and the nature of results it returns.

The workflow shown in Figure 2 was implemented based
on the software components described in section 2 (and
shown in Figure 1). It has been configured for different test
data and deployed in a single-node environment as well as
in a cluster environment available at AIT.

4. SCALABLE PROCESSING AND SEARCH
INFRASTRUCTURE

Although systems for parallel and distributed comput-
ing have been studied since the early 1980’s and parallel
database systems were established already in the mid-1990’s
[1], a significant change in the last decade occurred with
the advent of the MapReduce data processing paradigm [5]
and the subsequent rise of open source technology for dis-
tributed storage and parallel data processing provided by
Apache Hadoop. In the following, we describe the integrated
prototype backend which is based on Apache Hadoop and
related components that emerged in the Hadoop ecosystem
during the last decade.

4.1 Hadoop
The backend system of the integrated prototype is built on

top of the Hadoop framework and can be deployed on a com-
puter cluster allowing the repository infrastructure to scale-
out horizontally. This enables system administrators to in-
crease the available system resources (i.e. for storage and
processing) by adding new computer nodes. Using Hadoop,
the number of nodes in a cluster is virtually unlimited and
clusters may range from single node installations to clusters
comprising thousands of computers.

Usually one would, however, build a cluster consisting of
a master node and at least two slave nodess to get a perfor-



mance advantage from the distributed environment. Each
slave machine runs all services, which means that it runs a
DataNode, a TaskTracker and a Region Server. For produc-
tion clusters, it is recommended to deploy the NameNode on
its own physical machine and furthermore use a Secondary-
NameNode as a backup service. Although Lily is deployed
on multiple nodes, it does follow the concept of master and
slave nodes. There is only one type of Lily node which is in-
tended to run co-located with Region Servers on the cluster.

4.2 Lily
Lily provides a repository that is build on top of HBase,

a NoSQL database that is running on top of Hadoop. Lily
defines some data types where most of them are based on
existing Java data types. Lily records are defined using these
data types as compared to using plain HBase tables, which
makes them better suited for indexing due to a richer data
model. The Lily Indexer is the component which sends the
data to the Solr server and keeps the index synchronized
with the Lily repository. Solr neither reads data from HDFS
nor writes data to HDFS. The index is stored on the lo-
cal file system and optionally distributed over multiple clus-
ter nodes if index sharding or replication is used. Solr can
be run as a standalone Web-based search server which uses
the Apache Lucene search library for full-text indexing and
search. The integrated prototype utilizes the Lily Java API
as part of a Hadoop MapReduce job in order to ingest large
volumes of files in parallel.

4.3 Solr
There are several options to run Solr. The first option is

to run Solr only on one machine. In this case the index is
not split and only one shard is used. The second option is
to use multiple shards and configure Lily to distribute the
input over all shards. As Solr 4 introduced SolrCloud, this
became the third option, and it is also the preferred option
for a production system. SolrCloud does not only take care
of the sharding, it also provides a mechanism for replication.
Using Lily in combination with SolrCloud requires some ad-
ditional configuration work being done, as Lily was devel-
oped against Solr 4.0, where SolrCloud was not yet entirely
mature. For an example, it is required to create an empty
directory in ZooKeeper manually where SolrCloud can store
its information.

4.4 ZooKeeper
HBase, but also Lily and SolrCloud, depend on a running

ZooKeeper cluster. ZooKeeper is a framework that supports
distributed applications in maintaining configuration infor-
mation, naming, providing distributed synchronization, and
providing group services. ZooKeeper stores small amounts
of information, typically configuration data, which can be
accessed by all nodes. For experimental clusters that do not
need to provide high fault tolerance, it is sufficient to run
one ZooKeeper node, which is also called Quorum Peer. A
higher fault tolerance can be achieved by running three, five
or more Quorum Peers. If more than half of the nodes keep
running without failures, ZooKeeper stays reliable.

Figure 3: The architecture consists of user inter-
face components that support information package
ingest and access processes. The frontend compo-
nents are backed by a package creation infrastruc-
ture handling file, task, and workflow processing.
The frontend system is integrated with the Hadoop
backend infrastructure for content extraction, stor-
age, and search.

5. FRONTEND ARCHITECTURE

5.1 Overview
In general, the backend system of the integrated prototype

takes information packages as input and provides function-
alities like information extraction, search, and random ac-
cess for the contained data items. In the previous chapters,
we have outlined a set of custom components and services
which have been specifically developed to realize the inte-
grated prototype. The E-ARK Web Project described in
section 4 provides a lightweight front-end implementation
for this backend system. The responsibility of the frontend
system is the provisioning of user interfaces and correspond-
ing services for creating information packages like AIPs and
DIPs.

The architecture consists of user interface components
that support information package ingest and access pro-
cesses. The frontend components are backed by a Pack-
age Creation Infrastructure handling file, task, and work-
flow processing. The frontend system is integrated with
the Hadoop backend infrastructure for content extraction,
storage, and search. The implementations provided by the
integrated prototype are lightweight applications which are
limited in their functionality and focused on distinct E-ARK
principles. The architecture of the integrated prototype is in
general designed to support a loose coupling strategy so that
existing systems can be combined with and/or be augmented
with the integrated prototype or particular components of
the integrated prototype platform.



5.2 The E-ARK Web Project
The project E-ARK Web 6 is a web application together

with a task execution system which allows synchronous and
asynchronous processing of information packages by means
of processing units which are called “tasks”. The purpose of
E-ARK Web is, on the one hand, to provide a user interface
for the integrated prototype in order to showcase archival
information package transformation workflows which are be-
ing developed in the E-ARK project in an integrated way.
On the other hand, the goal is to provide an architecture
which allows reliable, asynchronous, and parallel creation
and transformation of E-ARK information packages (E-ARK
SIP, AIP, and DIP) integrated with E-ARK backend services
for scalable and distributed search and access.

The components of the E-ARK Web project coordinate
package transformations between the package formats SIP,
AIP, and DIP, and uses Celery 7, a distributed task queue,
as its main backend, shown in figure 3. Tasks are designed
to perform atomic operations on information packages and
any dependency to a database is intentionally avoided to in-
crease processing efficiency. The outcome and status of a
task’s process is persisted as part of the package. The E-
ARK Web project also provides a web interface that allows
one to orchestrate and monitor tasks by being loosely cou-
pled with the backend. The backend can also be controlled
via remote command execution without using the web fron-
tend. The outcomes of operations performed by a task are
stored immediately and the PREMIS format [2] is used to
record digital provenance information. It is possible to in-
troduce additional steps, for example, to perform a roll-back
operation to get back to a previous processing state in case
an error occurs.

5.3 The E-ARK Web User Interface
The user interface of the integrated prototype is a Python8

/Django9-based web application which allows for manag-
ing the creation and transformation of E-ARK information
packages (E-ARK IPs). It supports the complete archival
package transformation pipeline, beginning with the cre-
ation of the Submission Information Package (SIP), over
the conversion to an Archival Information Package (AIP),
to the creation of the Dissemination Information Package
(DIP) which is used to disseminate digital objects to the
requesting user. The E-ARK Web website is divided into
four main areas: First, there is the “SIP creator” area which
allows initiating a new SIP creation process and offers a
set of transformation tasks to build E-ARK compliant SIPs.
Second, there is the “SIP to AIP” area that allows for the
execution of tasks for converting an E-ARK compliant SIP
to an AIP. Third, there is the “AIP to DIP” area which al-
lows initiating a DIP creation process based on previously
selected AIPs used for building the DIP with the help of a
set of corresponding conversion tasks. And, finally, there is
the “Public search” area offering full-text facet search based
on the textual content available in the AIPs which have been
uploaded to the HDFS staging area, ingested into Lily, and
full-text indexed using SolR, as described in section 3. A
screenshot of this user interface is shown in Figure 4.

6https://github.com/eark-project/earkweb
7http://www.celeryproject.org
8https://www.python.org
9https://www.djangoproject.com

Figure 4: The earkweb user interface showing the
four main areas SIP creator, SIP to AIP, AIP to
DIP and Public search.

The common denominator of the “SIP creator”, “SIP to
AIP”, and “AIP to DIP” areas is that they all offer infor-
mation package transformation tasks. The transformation
of information packages is implemented in the same way
across all of the three information package transformation
areas. The “SIP creator” and the “AIP to DIP” areas addi-
tionally provide some basic setup forms in order to collect
information needed to initiate a new process. As shown in
Figure 5, the “SIP creator” provides a form which allows for
uploading individual files into the corresponding areas of the
information package.

The interface for executing tasks is basically the same
across all package transformation areas. The difference lies
in the tasks they provide. Figure 6 shows the task execution
interface of the “SIP to AIP” conversion. The pull-down se-
lect field shows tasks that are available in this area. Here,
the available tasks are related to information packages which
are converted from the initially submitted SIP to the AIP,
which is finally transmitted to the long-term storage and/or
uploaded into the distributed storage area for full-text in-
dexing and access.

Figure 7 shows a search interface used in the “AIP to
DIP”dialog that allows one to discoverer data in AIPs, select
individual items, and generate DIPs.

5.4 Asynchronous and parallel package pro-
cessing

As mentioned in section 5.3, the transformation of infor-
mation packages is implemented in the same way across all
of the three information package transformation areas. In
this section, we describe the task execution infrastructure
used by the E-ARK Web project to enable the reliable and
controlled execution of information package transformation
tasks. Apart from the Python/Django-based user interface,
E-ARK Web uses a backend for asynchronous and parallel
task execution based on the Celery task execution system,



Figure 5: User Interface of the SIP creator providing
a form to select individual files and the correspond-
ing location within the information package.

Figure 6: User interface for selecting and starting an
information package transformation. This screen-
shot shows the SIP to AIP conversion area.

Figure 7: Search interface in the AIP to DIP di-
alogue allowing a user to discover and select rele-
vant data items from AIPs available in the Content
Repository.

the MySQL10 database, and the RabbitMQ11 message bro-
ker software.

Whenever a task is initiated using the E-ARK Web task
execution interface, the RabbitMQ message broker receives a
message which is subsequently consumed by the Celery task
execution engine. Tasks can be assigned to workers which
are configured in the Celery backend. The workers share the
same storage area and the result of the package transforma-
tion is stored in the information package’s working directory
based on files.

As the actual status of the transformation process is per-
sisted during the task execution it is not required to inter-
rupt the processing chain for every executed task in order
to update status information in the database. Based on the
results stored in the working directory, the status of an infor-
mation package transformation can be updated with a sin-
gle operation when the transformation process has finished.
This strategy increases the processing efficiency, which is
critical when large volumes of data are processed, and helps
avoiding bottlenecks caused by a large number of parallel
database connections. Another advantage of this approach
is that by design it is possible to reconstruct the databases,
tracking the status of the processed information package,
based on the information contained in the working direc-
tories. Particular importance was given to the principle of
avoiding to instantly record digital object related process-
ing information in the database as this may entail the risk
of significantly increasing the processing time for very large
information packages.

The decision to use either synchronous or asynchronous
task execution for a specific task depends on the type of
task and also the kind of data the information package con-
tains. A task which itself initiates an unknown number of
sub-tasks, can lead to a long task runtime, possibly beyond

10https://www.mysql.com
11https://www.rabbitmq.com



the defined timeout limit. An example would be a set of file
format migration sub-tasks which are triggered for specific
file types, e.g. each PDF file contained in an information
package is converted to PDF/A. These cases can be imple-
mented using a master task that starts an unknown number
of sub-tasks and records the amount of migrations to be per-
formed. This task is followed by a verification task which
can be executed manually or automatically to report the
current status of task executions. This way, it is possible to
control that subsequent executions are not started before all
sub-tasks were executed successfully, and that all the (possi-
bly long-running) processes are decoupled from each other.
The upload of an AIP into the Hadoop infrastructure has
been implemented as a synchronous task. The live progress
of the upload process is shown directly in the user interface.
However, if for cases where AIPs tend to be very large –
where “large” is to be seen in the context of available band-
width and read/write throughput – it is easily possible to
change this task execution into an asynchronous task

5.5 Task and Workflow Definition
With respect to software design, a major goal was to foster

flexibility, modularity, and extensibility of the task execu-
tion base class. Tasks are implemented in one single Python
script and only contain the code that is necessary for the
concrete task implementation. The intention is to keep the
actual task implementation slim and offload extensive func-
tionality into an earkcore Python module12 which can be
made available to the Celery workers.

The E-ARK Web project defines a workflow model on top
of the task execution layer. The “state” of an information
package, as described earlier, is defined by storing the “last
executed task” together with the success/failure of the exe-
cution. Tasks provide interface definitions (like for example
“allowed inputs”) which provide the basis for workflow com-
position. Using this information together with the current
execution status, the workflow engine can control if a task is
allowed to be performed on a specific information package.

New tasks can be easily added to the system by supplying
a new task class implementation based on a Python script.
The new task is available in the system as soon as the Celery
workers are re-initialized. The configuration of the task is
handled directly within the task implementation based on
code annotations. Information to verify workflow composi-
tion is immediately available through the task description
and does not require any additional configuration files. As
the descriptive information is used to initialize the task con-
figuration information in the database, it can be also dy-
namically adapted in the database, if required.

6. EXPERIMENTAL EVALUATION

6.1 Hardware environment
The Lily/Hadoop deployment on the development cluster

at AIT is shown in figure 8. The cluster comprises seven
physical machines which are structured into a master and
six physical slave nodes. Each node on the cluster pro-
vides 6 CPU cores (12 threads using Intel HT), 16GB RAM
and 16TB SATA (hotplug) of storage. Each cluster node is
equipped with two network interfaces allowing us to attach

12https://github.com/eark-project/earkweb
/tree/master/earkcore

Figure 8: Hardware cluster at AIT used to host a
Lily repository on top of Hadoop, HDFS and HBase.

a node to two network infrastructures. The cluster is con-
nected to the internal network allowing us to directly access
each node from desktop/working environments. The sec-
ond private network is used for managing the cluster. For
example, new cluster nodes can be automatically booted
and configured using the PXE pre-boot execution environ-
ment together with a private Fully Automated Install (FAI)
server13.

6.2 Data set
The govdocs1 corpus [8] is a set of about 1 million files

that are freely available for research. This corpus provides
a test data set for performing experiments using different
types of typical office data files from a variety of sources.
The documents were originally obtained randomly from web
servers in the .gov domain. Due to the volume of collected
files and the variety of data types available in this corpus,
we have chosen to perform a document discovery over the
entire corpus as a simple use case for evaluating for the E-
ARK integrated prototype.

Here, it is important to note that the integrated prototype
is designed for the ingestion of information packages as de-
scribed by the OAIS model. E-ARK is developing a general
model along with as set of specifications and tools for han-
dling SIP, AIP, and DIP packages, which are being included
with the integrated prototype’s package creation infrastruc-
ture. AIPs are typically created as structured tar-files con-
taining data and metadata as described by the E-ARK AIP
format14. The repository provided by the integrated proto-
type is designed to maintain the structure of the ingested
information packages (by encoding file locations within the
record identifier) — allowing users to browse and search sin-
gle packages if desired — but in general provides search and
access across information packages on a per-file basis. For
the experimental evaluation we have ingested the govdocs1
corpus in the form of 1000 tar files, each containing 1000
documents, which results in 1000 packages available in the
integrated prototype’s repository, and 1 million files that are
full-text indexed, and that can be individually identified by
an URL and accessed via the REST API.

13http://fai-project.org
14http://www.eark-project.com/resources/project-
deliverables/53-d43earkaipspec-1



Figure 9: Govdocs1 file size distribution

TestDFSIO write read

Number of files 10 10
Total MBytes processed 10000.0 10000.0
Throughput MB/sec 17.80604586481 49.9852543499
Average IO rate MB/sec 17.93034553527 52.1930541992
Test exec time sec 72.661 36.593

Table 2: I/O performance benchmarking

Once all packages are ingested, documents can be found
using the search server API. Queries might include a full text
search string, filtering based on metadata (like MIME-type),
or restrict the search results on certain packages. Using
facets in a search query allows one to easily derive general
statistics about a search result. Figure 9 illustrates the result
of a faceted search query which groups all files of the ingested
govdocs1 corpus based on file-sizes. Most of the files fall in
the range between 1KB and 16MB and only a few small
files with size values starting from 7 bytes and 4 text files
over 1.5 gigabytes exist. An overview of the MIME types
available in the corpus is described by [17, p. 15]. We will
show as part of this evaluation how to retrieve this kind of
information from the system once the collection has been
successfully ingested.

6.3 Cluster I/O benchmarking
To provide indicative benchmarks, we executed the Hadoop

cluster I/O performance benchmarking test “TestDFSIO” as
described by [15] which is a read and write benchmark-
ing test for the Hadoop Distributed File System (HDFS).
TestDFSIO is designed in such a way that it uses 1 map
task per file. This is similar to the file ingest component of
the integrated prototype where each package (available as a
TAR file) is processed by one task. The default test method
of TestDFSIO is to generate 10 output files of 1GB size for a
total of 10GB in the write test which are subsequently read
by the “read” test. The results of this test are as presented
in table 2.

6.4 Evaluation results
The purpose of this evaluation is to give an approximate

insight on the performance of the E-ARK integrated proto-
type. Due to the complexity of the system set-up and the
numerous configuration options, the presented results should

Hadoop Job File Ingest Mapper

Number of map tasks 1000
Map input records 984951
Map output records 354
Job finished in 1hrs, 47mins, 51sec

Table 3: The integrated prototype automatically
triggers a MapReduce job when ingesting data into
the repository. The table shows the results reported
by the Hadoop MapReduce execution environment
after the govdocs 1 corpus has been ingested as a
set of 1000 tar-files.

Query parameter Value

facet on
q *:*
facet.field contentTypeFixed
rows 0

Table 4: Parameters of a faceted query that orders
the search results by the number of by MIME-types.

only provide an indication of the achieved cluster perfor-
mance rather than provide strict benchmarking results.

We defined a threshold for the file ingest workflow (exe-
cuted as a map task) to process a maximum file size of 50
Megabytes. The Govdocs1 corpus contains 354 files exceed-
ing this limit. These files sum up to a total size of about 42
Gigabytes and were ingested separately. The pre-configured
file limitation is an implementation detail which has been
set for practical reasons. In case it is required to automati-
cally ingest files of large sizes, this can be handled as well.
While Lily stores small files in HBase for efficient random
access, large files are stored directly in HDFS. There is no
file size limitation regarding the ingest or storage of files in
the repository. The basic test results of the Hadoop job
performing the ingest workflow are shown in table 3.

The number of 1000 map tasks corresponds to the 1000
TAR packages of the Govdocs1 corpus which were defined as
the input of the Hadoop job. The 984951 input records are
the individual files which were found in the TAR packages.
The map task performs the ingest of files into Lily and out-
puts only those files which had been skipped due to their file
size, as described earlier. The set of 1000 processed tar-files
sums up to a total of 467GB and the total wall time for the
ingest process amounts to 1 hour and 47minutes.

The files contained in the ingested tar-files are searchable
using the Solr search interface. Part of the job execution
was to run text extraction and MIME-Type detection us-
ing Apache Tika and to store this information in the index,
therefore it is now possible to run a single faceted Solr query
to get basic MIME-Type statistics with the parameters spec-
ified in table 4, where the field “contentTypeFixed” is the
field of type “string” defined in the schema of the collection
which holds the MIME-type of the corresponding file item.
This allows us, for example, to get an overview about the
ten most frequent MIME types in the collection as presented
in figure 10.



Figure 10: The ten most frequent MIME types (re-
sulting from a Solr facet query)

7. ADVANCED DATA ACCESS SCENARIOS
As part of the ingest workflow, the integrated prototype

adds, besides full-text information, various (often content
and use-case specific) metadata elements to the the repos-
itory record in order to enhance the capabilities of the de-
rived search index, as briefly demonstrated in the previous
section. Ongoing experimental work is dealing with uti-
lizing additional data mining strategies to further enhance
the integrated prototype’s search functionality. Two cur-
rently evaluated text mining strategies are Classification and
Named Entity Recognition, as explained below. The goal
is to add useful information to the full-text index, such as
discovered text categories. Besides selecting appropriate al-
gorithms and designing useful features, it is a challenge to
run such data mining algorithms on very large data volumes.
Initial experiments have been performed using ToMar [20],
a MapReduce application for efficiently running 3rd party
tools on a Hadoop-based cluster, developed in the context
of the SCAPE project.

7.1 Text classification
The classification of text allows one to make assumptions

on the contents of files, based on a previously trained model.
We are planning to use this technique to extend the search
interface provided by the E-ARK Web user interface through
adding a field for selecting automatically recognized text
categories. This way it is possible to search for documents
which relate to a specific topic combined with the existing
query and filtering options provided by the search server.
The number of search-able topics depends on the previously
trained classifier process, and therefore include an assump-
tion on which topics could be of interest for the user. As a
toolkit for implementing text classification, we have utilized
the scikit-learn [16] Python framework.

7.2 Named Entity Recognition
An additional goal was to identify locations, persons, or

other terms of interest as so called Named Entities. In initial
tests the the Stanford Named Entity Recognizer[7] has been
utilized to extract entities from text documents. Entities
that were classified as locations were, in an additional step,
geo-referenced using the Nominatim database [4]. As a re-
sult, an XML file containing a list of found locations together
with their corresponding coordinates was generated for each

analyzed document. The intention behind this work is to
incorporate new ways of making archived content accessible
to the user. Initial experiments dealt with visualizing the
geographical focus of identified topics over time using the
graphical map annotation tool Peripleo [21].

8. RELATED WORK
Warcbase [13] uses HBase as the core technology to pro-

vide a scalable and responsive infrastructure for web archiv-
ing. The environment makes use of the random access capa-
bilities of HBase to build an open-source platform for man-
aging raw content as well as metadata and extracted knowl-
edge. Additionally, Warcbase provides exploration, discov-
ery, and interactive visualization tools that allow users to
explore archived content.

The Internet Memory Foundation has built a distributed
infrastructure for Web archiving, data management, and
preservation using Apache Hadoop as one of the core tech-
nologies [14]. Their focus is on scalability issues in terms of
crawling, indexing, preserving and accessing content.

RODA is an open source digital repository which delivers
functionality for all the main units of the OAIS reference
model [6]. RODA provides distributed processing and the
execution of digital preservation actions (e.g. migration) on
a Hadoop cluster.

The European project SCAPE (Scalable Preservation En-
vironments) addressed the preservation of very large data
sets found in digital repositories, scientific facility services,
and web archives as one of the main use cases [18]. SCAPE
has build on top of a Hadoop-based infrastructure for defin-
ing and carrying out preservation workflows. Additionally
the project investigated the integration of an Hadoop-based
infrastructure with the Fedora Commons repository systems [11].

9. CONCLUSIONS
In this paper we presented a prototype infrastructure for

the scalable archiving of information packages developed in
the E-ARK project. The system is implemented using a set
of open source technologies including for example Apache
Hadoop, the Lily Project, and Apache SolR. As we have
outlined, there are a number of related projects, mostly in
the Web archiving domain, which are using a similar tech-
nology stack for scalable e-archiving. The system presented
in this paper is however targeting the archival community
and specifically designed to support OAIS-based concepts.
The Integrated Platform Reference Implementation Proto-
type has been developed to handle the creation, ingestion,
and access of E-ARK information packages using an environ-
ment that scales from a single host to a cluster deployment.
The system can be deployed as a stand-alone environment
but also next to existing archiving systems in order to en-
hance available services, like for example finding aids (using
the full text index) and order management (using the con-
tent repository).

Here, we have provided a brief overview of the system
architecture and the employed technologies. We have also
described the ingest workflow in more detail and explained
how the individual components are employed and how they
are related to each other. As an evaluation of the approach,
we have ingested and indexed the entire Govdocs1 corpus
consisting of nearly 1 million documents with a total size
of about 467 Gigabytes in less then 2 hours, making the



text content discoverable in and across information packages
based on full-text as well as metadata-based queries using a
powerful search server. The used repository provides instant
access at the granularity of single files which can be viewed
and/or packaged for dissemination using the provided E-
ARK Web access components. The paper reports also on
future directions to further improve the search capabilities
of the system by employing data mining algorithms.
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