Constructing Scalable Data-Flows on Hadoop with
Legacy Components

Rainer Schmidt, Matthias Rella, and Sven Schlarb
AIT Austrian Institute of Technology GmbH
Donau-City-Strasse 1, 1220 Vienna, Austria

rainer.schmidt@ait.ac.at

Abstract—In recent years, data intensive computing platforms
have gained wide spread adoption in diverse domains. The Apache
Hadoop ecosystem provides a rich software stack that supports
data analysts in managing large volumes of data at different
levels of abstraction. Higher level frameworks provide support for
crafting scalable data-flow applications, creating databases from
unstructured data, and for performing business analytics tasks.
We have, however, also observed a strong need for the integration
of existing software tools into data-intensive applications in order
to carry out data and/or application specific tasks that are
not directly supported by the platform or that cannot be re-
implemented with reasonable effort. Examples are the processing
of multimodal data (image, video, audio), the integration of
scientific, often community-specific, libraries, or the execution of
complex and experimental data mining algorithms. We present
ToMaR, a flexible application for integrating existing software
into data-flow applications that execute on top of a MapReduce-
based environment. The application supports a Linux-inspired
pipes-and-filter based syntax, the execution of existing applica-
tions using file and stream based IO, and the efficient integration
with existing data-flow frameworks like Apache Pig. The paper
describes general techniques implemented and used by ToMaR
and their application in context of the EU project SCAPE.

I. INTRODUCTION

Driven by the need of processing data volumes at the
Internet-scale, scale-out solutions for storing and analyzing
large volumes of content using large clusters of commodity
computers have been developed [1]. Data-intensive computing
frameworks typically provide a distributed files system, as well
as an efficient execution environment which is supported by
a parallel programming model and execution strategy. While
these frameworks where initially targeting the implementation
of scalable applications for web indexing, log file analy-
sis, or graph processing, recent developments have shown a
much broader applicability of data-driven solutions. Higher-
level services implemented on top of the frameworks, enable
users to handle large volumes of unstructured data based
on higher-level languages enabling one for example to build
up distributed databases and to utilize business intelligence
tools [2] [3].

Apache Hadoop provides an open-source implementa-
tion of the MapReduce framework introduced by Google in
2008 [4]. In recent years, a vibrant community as well as a
rich eco-system of Hadoop-related projects evolved supporting
scalable and distributed data-processing applications at various
levels. Projects like Apache Pig or Hive enable a direct map-
ping of data management techniques like commonly database
operations to massively parallel architectures allowing one to

perform well known data analytics tasks on large-scale data
sets by using higher-level data analytics frameworks [5]. Next-
generation “Big Data” frameworks like Apache Spark and
Flink introduce new architectures, richer programming models
and higher-level languages [6].

Parallel data processing analytics environments, however,
require the user to conform to a parallel programming model
(like MapReduce), take advantage of a higher-level language
(like Pig or Hive), or make use of utilities like the Hadoop
streaming API. While these methods provide key abstractions
for processing large-scale data sets, it is still required to
integrate existing software components into the data processing
chain. The loading of complex data formats like raw scientific
data, encoded video or audio data typically requires the uti-
lization of specific libraries that are able to decode and process
the data. In many domains, these tools are however only
available in the form of existing and highly optimized libraries
and stand-alone applications. In these cases it is clearly not
feasible to re-engineer individual application components to
fit a particular programming model but it is nevertheless
often desirable to take advantage of data-intensive computing
platforms.

We present ToMaR, an application that provides flexible
and easy to use mechanisms for executing legacy applications
on Hadoop clusters. ToMaR is intended to enable users to
execute existing applications on the cluster in a similar way
they are executed in a desktop environment. ToMaR is exten-
sible regarding the used application invocation mechanisms,
workflow and execution engines, as well as the utilized storage
systems (like HDFS or Microsoft HDInsight blob storage). In
the context of the SCAPE project, ToMaR has been evaluated
based on three different application areas including data sets
such as high-resolution images from digitized books, Web
archiving snapshots, and large-volumes of data items generated
by scientific instruments.

This paper describes the basic concepts used and imple-
mented in ToMaR. This includes the strategies for handling
application invocation and IO, application composition, and
the handling data locality for referenced content. We report
use-cases from the SCAPE project and conclude with a brief
evaluation of ToMaR’s support for executing scalable data
flows on top of the Apache Pig data analytics platform.

II. LEGACY APPLICATION SUPPORT

Implementing custom MapReduce applications provides a
powerful way for creating robust and scalable applications that

are 10 bound. For many domains, it is however not possible
to implement the entire data acquisition and analysis workflow
based on Java, MapReduce, and database abstractions. Porting
existing image processing tools to native Hadoop applications
would not be feasible in many cases. The fact that data-
intensive computing frameworks are required to handle data
sets at a certain scale motivates the development of suitable
approaches for integrating existing and domain-specific appli-
cations on these platforms.

A. Limitations of Built-in Mechanisms

The invocation mechanism and IO handling for legacy
applications is governed by a specific tool descriptor when
using ToMaR. Hadoop has a built in mechanism that supports
the execution of scripts like Bash or Python which are auto-
matically translated and executed as MapReduce applications.
This mechanism provides convenient support for processing
data with common UNIX filters but is limited with respect
to integrating arbitrary applications. Examples are applications
that do not support IO steaming or operations that are requiring
multiple inputs (which might be passed by reference). Hadoop
is designed to process its input based on key/value pairs. This
means the input data is interpreted and split by the framework,
which makes it also difficult for processing binary data. Legacy
applications in general do not support HDFS file pointers and
often do not support IO streaming through stdin/sdout making
these tools difficult to use on Hadoop in general.

B. Application Examples

ToMaR is a generic MapReduce application that has been
developed in SCAPE to provide efficient legacy application
integration for scalable content processing. The development
of ToMaR in the SCAPE project was motivated by a strong
need for executing tools and workflows in a scalable fashion
and to deal with data volumes beyond test examples. This
was hindered by the diversity of applications developed and
used by researchers. Data-flow applications where often imple-
mented using desktop workflow environments, scripts chaining
together multiple command-line tools, or using algorithms
implemented in packages like Matlab. Example applications
involved the calculation, extraction and comparison of meta-
data, detection of the file formats or codecs, and transcoding or
signal processing. Matchbox [7], Jpylyzer [8], Pagealizer [9],
or xcorrSound [10] are examples for tools that have been
developed in the context of SCAPE, each addressing different
preservation activities and types of content. Examples scenar-
ios from the SCAPE project are:

e The detection of image duplicates and cropping error
in millions of scanned book pages, using Matchbox
as a tool for image comparison using computer vision
approach based on the OpenCV library.

e Preserving scientific data by conversions from the
RAW format to NeXus which is a proton and neutron
community format, using community tools and HDF5
libraries.

e Deep characterization of Web archives for millions
of resources, using different format validators and
metadata extractors (formats, encodings, validity).

e Quality Assurance for archived content involving au-
diovisual content, using applications for the compari-
son of images (like browser snapshots) or audio files
(through cross correlation).

A common characteristics of the employed workflows was
their resource intensiveness often caused by the processing
of large volumes of binary input files. Besides specific cal-
culations, third party tools where often used for generating
large data sets from binary content. This process step can be
easily exectued in a data parallel fashion and the resulting
data sets could be subsequently processing very well using
common data management services available on systems like
Hadoop. Due to the large variety and complexity of these tools,
it was however neither feasible to restrict the utilized thrid
party applications by language, supported IO mechanisms or
API, nor to reimplement their functionality to fit a particular
execution environment.

III. BASIC CONCEPTS AND MECHANISMS
A. Specification Language Features

ToMaR relies on the SCAPE Tool Specification Language
which provides a simple XML schema! for formalizing the
usage of different software components (tools) by specify-
ing properties like API calls, configuration parameters, or
defining how IO is handled. Tool specification documents
(called toolspecs) are XML documents which define a set of
operations that can be carried out by the tool they define.
Tool specification documents can describe general patterns for
using a single software package or define new operations. The
operations defined in the toolspec documents specify atomic
operations that can be carried out at scale using ToMaR.
A tool specification document comprises a set of fields that
provide general information including author, licensing, and
installation requirements. The operations element defines one
or more atomic operations, consisting of a textual description,
a definition of the software to invoke as well as a specification
of inputs and outputs. The inputs and outputs elements provide
a definition for each input and output including unique names
and a definition how IO is handled (e.g. based on files or std.
streams). Tool specification documents also provide a simple
and flexible mechanism to define tool dependencies, in partic-
ular for workflows. Applications that have been developed in
the context of SCAPE are provided as Debian packages. These
packages come with a toolspec document by default which can
consequently be resolved using Linux package management.

B. Control File

If running as a standalone MapReduce application, ToMaR
takes a generated plain text file as input (called a control file)
specifying how one or multiple joined toolspec operations are
applied to the payload data. Each line in the input file (called
a control line) typically applies the specified command to a
particular data item (e.g. a file). Hence, a user could generate
a control file with n lines in order to process n input files
with ToMaR. The control file is broken into splits at execu-
tion time and processed independently by distributed mapper
processes. When applied together with a higher-level platform

lavailable at https:/github.com/openplanets/scape-toolspecs/blob/master/
toolspec.xsd

like Apache Pig, the input for ToMaR can be dynamically
generated and it is no longer required to create a control file
before execution time. However, the syntax for specifying the
commands to be executed by ToMaR on the cluster are similar,
regardless if the control lines are generated statically or on-the-
fly. In the following we give a short overview of the control file
specification presently supported by ToMaR. For more detailed
information the reader is referred to the ToMaR documentation
on Github?.

A control line specifies the invocation logic for one or
multiple operation defined by a tool specification document
including concrete values for parameters (like file references).
At present, ToMaR supports references to the HDFS file
system as well as the Azure blob storage (WASB) as a
distributed data source / data sink. The tool specification
language also supports the definition of commands that read
from standard input and/or write to standard output, which
can be consequently used for specifying a control line that
invokes an operation that streams data from/to a file on HDFS
indicated by the ’>’ character. Instead of streaming a com-
mand’s output to a file, the output stream can also be redirected
to another toolspec command, similar to using pipes on the
UNIX shell. Compared to performing these tasks separately,
the mechanism allows one to create chained operations which
are handled by ToMaR within a single map invocation step. IO
redirection between toolspec operations is indicated with the
’I” character. ToMaR supports application shipping for Java-
based applications relieving ToMaR from creating expensive
OS-level processes for invoking legacy applications, which can
significantly improve the application performance.

IV. DATA DECOMPOSITION
A. Splitting Input Data

The control file provides the input data of the MapReduce
application, which is split and distributed across the cluster
nodes. Hadoop creates an input split for each line by default
(causing the creation of a map task for each line of the control
file). In most cases it is therefore advisable to configure the
number of lines per split (-n option) with respect to the cluster
size as well as the nature of the application. The total number
of splits for an input file might be selected to be a fraction of
the maximal available map tasks. There is however a trade-off
between large splits (less efficient with respect to fail-over/load
balancing) and small splits which increase the overhead on
application. Each line of a split (called a record) is processed
iteratively on the worker node the split has been assigned to by
the framework. The workload that is imposed on a node by a
single record depends on the formulation of the control lines,
which can significantly vary between different applications.

B. Handling Data Locality

While Hadoop is capable of exploiting data locality by
allocating CPUs for processing the splits of a large input file
which reside closely to the data, this mechanism fails for input
files containing only references to the payload data. Although
the control file holds information on data locality implicitly it
is not exploited per se. ToMaR implements a specific input
format class called ControlLinelnputFormat which enables

Hadoop to exploit data locality for the distributed processing of
referenced content in control files. This is achieved by sorting
and splitting the control file with respect to the referenced data
blocks. Our algorithm identifies the required data blocks (and
their replications on HDFS) for each record. After generating
a sorted list of hosts for each control line, a new control
file that is sorted with respect to data locality is generated.
Using the newly generated input file, ToMaR is capable of
creating sorted data splits which carry information regarding
their location, which in turn can be exploited by the Hadoop
execution environment as shown in Figure 1.

3000 : . :

2500 —

2000 —

)

3 1500

time {seconds

1000 = »—% NLincInputFormat =1

%X ControlFilelnputFormat

500

L | L | L | L I L
] 5000 10000 15000 20000 25000

number of files per job

Fig. 1: Performance results for calculating MDS5 hashes for
referenced content. The ControlFileInputFormat provides sup-
port for handling data locality based on sorted and annotated
input files.

V. CREATING COMPLEX DATA FLOWS
A. Higher-level Data-flow Language

Higher-level languages like Apache Pig support the devel-
opment of complex data-flow applications for large volumes
of data as for example provided by Extract, Transform, Load
(ETL) processes. Pig provides a convenient data flow language
allowing users to efficiently perform data transformations using
database abstractions. Pig’s concept of user-defined functions
(UDFs) enables one to develop custom functionality in Java.
UDFs are registered with a Pig Latin script and used as part of
a statement for example to load/store, filter, or aggregate data.
These mechanisms are also well suited to integrate complex
software components like required for performing machine
learning tasks [11].

B. Data Extraction Example

In the following we present a fraction of a larger data
flow application which was implemented to analyze different
versions of images resulting from large-scale book scans in
the SCAPE project. The workflow has been implemented as
a Pig Latin script and makes use of ToMaR to invoke FITS?,
a software component that identifies, validates, and extracts
technical metadata for various file formats. FITS wraps several
third-party open source tools, normalizes and consolidates their
output. The snippets in figure 2 shows examples for different
operations defined in the FITS tool specification document.

Zhttps://github.com/openplanets/tomar

3https://code.google.com/p/fits/

FITS is applied on a set of files residing on HDFS in order
to generate XML metadata. The used operation “j-identify”
makes use of Java shipping to invoke FITS by ToMaR within
its JVM (as compared to using the command-line interface).
Data is read from the file system and the output stream is redi-
rected to the next operation “‘j-xpath-stdin”, which evaluates an
XPath expression and returns the result to stdout. The example
snippet in figure 3 shows a control file that makes use of two
chained toolspec operations.

<operation name="identify">
<command=>/bin/fits.sh -i ${input} -o ${output}</command=>

<operation name="identify-stdout">
<command=/bin/fits.sh -i ${input}</command=>

<operation name="j-identify-stdout">
<command=/usr/bin/java
edu.harvard.hul.ois.fits.Fits -i ${input}</command>

Fig. 2: Different operations defined within the FITS tool
specification document.

fits identify-stdout --input="hdfs:///extracted.10" |
xpath j-xpath-stdin --xpath="//identity[1l]/@mimetype”

fits identify-stdout --input="hdfs:///extracted.1l" |
xpath j-xpath-stdin --xpath="//identity[1l]/@mimetype”

Fig. 3: Control file for extracting mime type information using
two joined operations.

ToMaR implements the necessary hooks to be registered
and used within a Pig Latin script. This is motivated by the
fact that ToMaR is typically used as part of a larger workflow
that needs to analyze the data produced by third party tools.
By utilizing ToMaR within a Pig script, one can directly
pick up results generated by legacy applications and process
and analyze them on Hadoop. Here, data is directly loaded
from/into Pig relations and there is no need to generate a
control file prior to the execution. The generation of map and
reduce tasks for performing data manipulations are entirely
delegated to the Pig platform. The example snippet in figure 4
shows a Pig latin script that invokes FITS using ToMaR.

REGISTER tomar-1.4.2-SNAPSHOT. jar;
DEFINE ToMarService eu.scape_project.pt.udf.ControllLineUDF();
DEFINE XPathService eu.scape_project.pt.udf.XPathFunction();

pth = LOAD '$image_paths' USING PigStorage() AS N
(image_path: chararray);

fits = FOREACH pth GENERATE image_path as image_path,
ToMarService('$toolspecs’,
CONCAT (CONCAT(* fits stdxml --input="hdfs://', image_path), '"'))
as xml_text;

mimes = FOREACH fits GENERATE image_path, XPathService
("$xpath_expl', xml_text) AS node_listl;

Fig. 4: Pig Latin snippet using ToMar and XPath based on
UDFs. Resulting data sets are loaded into a Pig relations.

Experimental tests showed no significant impact on the
performance if ToMaR is utilized on top of the Pig platform as
compared to being run as a standalone MapReduce application.
An experiment in which 50.000 random files have been pro-
cessed in 1000 splits on a 10 node development cluster led to
the results shown in table 1. The above described workflow
fragment has been executed in Pig Latin as well as using

ToMaR as standalone MapReduce applications. Both work-
flows have been executed with and without using ToMaR’s
support for Java application shipping.

Application/Invocation | Java | Command line
ToMaR (standalone) 421 9.02
ToMaR with Pig 442 9.32

TABLE I: Execution time in hours for processing 50.000
random files with the tools FITS and XPATH using ToMaR as
standalone MapReduce applications and in combination with
the Apache Pig platform. Tool invocation was performed di-
rectly in Java and alternatively via the command line interface.

VI. CONCLUSION

We have presented an approach and application for inte-
grating existing applications into scalable data flows. ToMaR
provides a flexible application that has been developed and
evaluated in the context of the EU project SCAPE for an-
alyzing large volumes of content, originating from different
domains, on scalable environments like Apache Hadoop. In
this paper, we describe a set of mechanisms that support the
flexible and efficient integration of third party applications in a
MapReduce environment. We give an example how application
logic can be implemented in ToMaR and executed as part of
arbitrary MapReduce based workflows. Furthermore, we show
that the presented approach can also be efficiently integrated
with higher-level services like provided by the Apache Pig
framework. In this setting, ToMaR is solely used for appli-
cation integration while operations like data representation,
decomposition, and/or processing - which are specific to the
MapReduce execution environment - are entirely delegated to
the data analytics platform.

REFERENCES

[11 S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proc. of the Nineteenth ACM Symposium on Operating Systems
Principles, ser. SOSP *03. NY, USA: ACM, 2003, pp. 29-43.

[2] A.F. Gates, O. Natkovich et al., “Building a high-level dataflow system
on top of map-reduce: The pig experience,” Proc. VLDB Endow., vol. 2,
no. 2, pp. 1414-1425, Aug. 2009.

[3] A. Thusoo, J. S. Sarma et al., “Hive - a petabyte scale data warehouse
using Hadoop,” in ICDE ’10: Proc. 26th Int. Conference on Data
Engineering. 1EEE, Mar. 2010, pp. 996-1005.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107-113, January 2008.

[5] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, “Parallel
data processing with mapreduce: A survey,” SIGMOD Rec., vol. 40,
no. 4, pp. 11-20, Jan. 2012.

[6] V. Markl, “Breaking the chains: On declarative data analysis and data
independence in the big data era,” Proc. VLDB Endow., vol. 7, no. 13,
Aug. 2014.

[7] R.Huber-Mork and A. Schindler, “An image based approach for content
analysis in document collections,” in Advances in Visual Computing, ser.
Lecture Notes in Computer Science, 2013, vol. 8034, pp. 278-287.

[8] van der Knijff ef al., “Improved validation and feature extraction for jp2
images: the jpylyzer tool,” in Archiving Conference, vol. 2012, no. 1.
Society for Imaging Science and Technology, 2012, pp. 264-269.

[9] A. Sanoja, S. Gangarski et al., “Block-o-matic: a web page segmentation
tool and its evaluation,” BDA, Nantes, France, 2013.

[10] B. A. Jurik and J. A. S. Nielsen, “Audio quality assurance: An
application of cross correlation,” Proc. IPRES, 2012.

[11] J. Lin and A. Kolcz, “Large-scale machine learning at twitter,” in Proc.
of the 2012 ACM SIGMOD Int. Conference on Management of Data,
ser. SIGMOD ’12. New York, NY, USA: ACM, 2012.

