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Abstract—We present ToMaR, a scalable application that
supports the efficient integration of legacy applications within
a MapReduce environment. The work is motivated by scenarios
for scalable content processing developed in the context of the
EC project SCAPE. ToMaR specifically addresses the need
for extracting data sets from large volumes of binary content
based on existing, content-specific applications within a scalable
data management environment. This paper discusses the main
functionalities of ToMaR and describes how ToMaR is utilized
as part of a typical workflow. We present a real-word scenario
that makes use of ToMaR for the characterization of archived
web content. A workflow and experimental results which have
been produced using sample content from the Web Archive
Austria are discussed.

I. I NTRODUCTION

ToMaR has been developed in the context of the Scalable
Preservation Environments (SCAPE) project1 to support the
processing of large volumes of content available in digital
libraries and archives. Data sets that are being analyzed
include millions of high-resolution images from digitized
books, many hundreds of thousands of individual data items
generated by scientific instruments, and tens of TBs of
web-content containing hundreds of millions of resources.
Libraries and archives are obliged to curate these data sets
in order to manage and preserve them allowing users to
access, reuse, or analyze them.

An important activity when dealing with the management
of archived content is the extraction of metadata from the
ingested items enabling the controlled execution of subse-
quent analysis and/or data management actions. Archival
information systems [1] are traditionally handling data ex-
traction and manipulation activities through batch pipelines
provided by data curation software [2] during the ingest
process. While this approach is being commonly used in
conventional data archiving systems, it fails when processing
very large volumes of content, as mentioned above.

With the advent of Internet and cloud computing, new
technologies have been developed which enable us to pro-
cess data at a very large scale [3]. While this technology shift
has become natural for Internet companies who are driving
this development, it imposes - besides new opportunities -
significant problems for traditional content holders as well as

1http://scape-project.eu

for the domain scientists aiming to retrieve new information
from the archived content.

Scale-out architectures have proven to work well for
storing and analyzing large volumes of unstructured al-
phanumeric data sets. This is supported by frameworks that
enable a direct mapping of data management techniques
(like data base operations) to massively parallel architec-
tures [4], allowing us to perform well known data analytics
tasks on large-scale data sets by using implementations like
Apache Pig [5] or the Mahout [6] library. Decomposing
and processing data BLOBS like audiovisual content in
such an environment is possible but much more difficult to
generalize [7].

SCAPE is developing a platform and corresponding tool
kit that utilizes data-intensive technologies for analyzing and
preserving digital content. Our prototype implementation
replaces different key components of the archival system
with scalable solutions. Integration with the presently devel-
oped Fedora 4 repository [8] provides a horizontally scalable
digital object management system supporting scalable digital
object management and large-scale access/ingest functional-
ity. Storage, automated data-base building, and data analytics
have been built on top of the Apache Hadoop [9] framework.
A key requirement for the system, however, is support for
legacy applications which are mainly required for generating
data sets from the initial binary content. ToMaR, a tool
which is being heavily used by content providers in the
SCAPE project, implements this functionality.

Scalable environments like Hadoop require the user to
conform to the MapReduce programming model, take advan-
tage of a higher-level language (like Pig or Hive), or make
use of utilities like the Hadoop streaming API. While these
methods provide key abstractions for processing large-scale
data sets, they are not directly applicable to the processing
of binary content for a number of reasons, as explained
later in this paper. ToMaR provides a flexible tool allow-
ing practitioners to easily execute sequential applications
efficiently in a MapReduce environment. This enables one
to perform typical data curation actions (like file format
identification, data validation, or the extraction of metadata)
mostly requiring the use of legacy applications with minimal
effort. By relying on Hadoop as its execution environment,
ToMaR provides a robust pre-processing application, allow-
ing one to generated large-scale data sets in a way that makes



them directly usable through a variety of data management
frameworks present in the Hadoop eco-system.

II. M OTIVATION

The development of ToMaR was motivated by the need
for an application that supports the execution of legacy
applications in a MapReduce environment, as employed by
the SCAPE Preservation Platform [10]. The SCAPE plat-
form developed in the context of the Scalable Preservation
Environments (SCAPE) project provides an infrastructure
that targets the scalability of preservation environmentsused
by digital libraries and archives. The goal is to enhance
the scalability of storage capacity and throughput of digital
object management systems based on varying the number of
computer nodes available in the system and to support the
execution of large-scale data analytics tasks against different
sets of digital content. The SCAPE Testbeds implement
workflows that utilize real world data from three different
application areas: Digital Repositories from the library com-
munity, Web Content from the web archiving community,
and Research Data Sets from the scientific community.

The SCAPE platform prototype implementation is based
on existing, mature software components like Apache
Hadoop, the Taverna Workflow Management Suite, or the
Fedora Digital Asset Management System, and implements
a set of additional services on top of these software compo-
nents to specifically support scalability and integration with
digital preservation processes as well as to integrate with
other SCAPE components. Figure 1 provides an overview
of the main entities of the SCAPE preservation platform
and shows their interactions.

Figure 1. Components and services of the SCAPE Preservation Plat-
form. The available software components provide support for workflow
design and description, registration and lookup of preservation components,
storage and analytics, and digital object management and efficient access.
Integration with the SCAPE Preservation Planning and Watchcomponents
is supported through the Component Catalogue Lookup API and the
Repository Plan Management and Watch APIs.

A key challenge of the platform was to efficiently support
the integration of legacy tools most scenarios rely on, within
its parallel execution environment. One example is the
management of scientific data coming from neutron, x-ray,

and muon science. Many data sets produced by large scale
scientific facilities come in custom (manually developed)
data formats like the RAW format developed by the UK Sci-
ence and Technology Facilities Council2. To curate, analyze,
and preserve these hundreds of thousands of these data sets,
it is required to transform them to NeXus, which is a Proton
and Neutron Community format. Converters from Raw-to-
NeXus exist as well as tools for NeXus validation and
metadata generation. Although large-scale data management
techniques are required to cope with these data sets, it is not
feasible to re-engineer applications to support raw file format
interpretation in a MapReduce environment.

III. H OW TOMAR WORKS

ToMaR3 is essentially a flexible application wrapper that
supports the execution of sequential tools and APIs on
Hadoop-based MapReduce clusters. The goal of ToMaR
is to enable the efficient execution of a variety of legacy
applications based on a simple user-supplied xml descriptor.
This includes handling ad-hock scripts, pre-installed appli-
cation packages, workflows, file-based and streaming IO,
APIs, and command pipes. Another goal is the integration
of the external processes with the MapReduce model and
data IO with Hadoop-specific concepts like HDFS, HBASE,
or SequenceFiles. ToMaR must also be able to handle short
running processes against large amounts of files efficiently.
A key concern here is to avoid the overhead a significant
performance degradation being introduced by startup over-
heads of the map and reduce tasks.

A. Application Shipping

ToMaR does not handle the shipping of legacy applica-
tions to the computational nodes of a cluster. Instead, it
assumes that the required applications are made available
via the Hadoop framework or the node’s operating system.
Hadoop provides built-in support for shipping Java-based
applications to the computational nodes via its distributed
cache. However, many use-cases found in the content man-
agement domain require the employment of applications that
rely on software that must be pre-installed on the operating
system. Examples are multimedia codecs, image processing
libraries, or characterization tools. On the SCAPE platform,
the automated deployment of software is handled through
the Debian package management system. Other techniques
allowing us to configure a large cluster on demand in-
clude FAI and PXE. The SCAPE development infrastructure
provides a Fully Automated Installation (FAI) server4 for
setting up the cluster nodes. The service allows us to easily
add and fully configure new nodes to the system, which
can be booted via a network card using PXE, a pre-boot

2http://www.openplanetsfoundation.org/blogs/2012-07-10-research-
datasets-testbed-stfc-data-what-and-why

3available at: https://github.com/openplanets/tomar
4available at: http://fai-project.org/



Figure 2. Fragment of a tool specification document that implements an
ad-hock script using the Linux file utility to identify HTML files. Input is
read from the standard input stream.

execution environment most modern network cards support.
Additionally, the Eucalyptus cloud stack [11] has been
used to deploy individually configured clusters on demand.
Worker nodes of the infrastructure run the XEN hypervisor
and a Debian distribution that includes a Xen Dom0 kernel.

B. Tool Specification Language

The SCAPE Tool Specification Language provides a
simple XML schema5 to formalize the usage of different
software packages (tools) by specifying properties like API
calls, configuration parameters, or defining how IO is han-
dled. Tool specification documents (toolspecs) are XML
documents that define a set of operations that can be carried
out by the tool it defines. Tool specification documents
can describe general patterns for using a single software
package, or define new operations, e.g. for a complex
command-line invocation. The termtool however refers to
any possible combination of executable software packages
(like scripts, APIs, or piped commands), which can be
defined by a tool specification document. Important con-
cepts of the toolspec schema are<operation> defining
an new operation,<command> defining an command-line
or API call, <input>/<output> defining IO properties
like required inputs, generated outputs, file/stream-based IO.
Figure 2 provides a simple example for expressing a Linux
shell command sequence as a toolspec operation. Data is
read from standard input and results are sent to standard
output using the Linuxecho command. ToMaR can be
used to execute the newly definedsisHtmlcommand against
millions of archived web resources that reside on the Hadoop
distributed file system and handle the streaming between
the application processes and the HDFS. ToMaR supports
an extensible set of implementations for different transport
protocols like file http, file, hdfs. Tools that are provided as
Debian packages by the SCAPE project come with a tool
specification document by default6.

5available at https://github.com/openplanets/scape-toolspecs/blob/master/
toolspec.xsd

6available at https://github.com/openplanets/scape-toolspecs

C. Generating and Handling Input

The operations defined in the toolspec documents specify
atomic operations that can be carried out at scale using
ToMaR. A design goal in this context was to enable users
to execute an operation on the cluster in a very similar way
as it would be done on a desktop computer. ToMaR takes a
plain text files as input specifying how one or multiple joined
toolspec operations are applied to the payload data. As per
the MapReduce model, the generated input file is broken
into splits at execution time and processed independently
by distributed mapper processes. ToMaR’s input file format
can be split between lines, and each line of a split (called a
record) is then processed by a map task. When generating an
input file, there are a number of options one should consider
in order to achieve good performance on a cluster, as shown
in figure 3:

• Toolspec inputs: The ToMaR input file is used to
specify the sequence of commands to be executed by
a ToMaR job. It also selects the way IO should be
handled and specifies concrete values for file placehold-
ers defined by the tool specification documents. Many
applications, however, implement custom workflows
allowing one to process multiple files recursively or
in batch mode minimizing application startup over-
heads. Exploiting tools-specific optimization strategies
provides an important aspect that can be dramatically
improve performance. An example for recursive pro-
cessing is the File Information Tool Set (FITS) that
has being utilized in the experiment described later in
this paper.

• Toolspec output: The output generated by a record
that is processed by a map task is written to standard
output and/or files on the HDFS, as defined by the
corresponding tool specification document. ToMaR can,
however, be extended to pass the output values to
one or multiple reducers. This can be very helpful
to aggregate the produced results and/or to store data
within a data base or container file. Current experi-
ments deal with directly writing output into HBase and
Hadoop SequenceFiles from ToMaR without requiring
an additional MapReduce job to be run.

• Split size: ToMaR is configurable with respect to the
number of mappers that are used to process the input
file. This provides an important parameter as it deter-
mines the size of the input file splits that are shipped to
the map tasks. For very short running operations less
map tasks (processing n records) should be used than
for long running operations, even on large clusters. Op-
timizing the tradeoff between number of mappers and
split size is however subject to individual application
fine-tuning, as shown in section IV.

• Chained operations: Another method to enhance the
performance of a ToMaR based workflow is to combine



Figure 3. Examples of possible ToMaR input files: (a) processes one
file or directory per record, (b) processes n files per record by utilizing
recurse processing supported by the tool, (c) passes IO between the process
and HDFS by redirecting input and output streams, (d) combinestoolspec
operations using IO pipes.

multiple tool invocations per record using IO pipes,
which is supported by ToMaR. Chained operations
allow us to reduce the MapReduce overhead which
occurs when multiple jobs have to be started in order
to execute a workflow.

D. Comparing Related Approaches

Implementing custom MapReduce application provides
a powerful way to create robust and scalable applications
that are IO bound. Frameworks like PIG and HIVE [12]
provide higher-level abstractions that enable users to analyze
data that is organized in a data warehouse. For many
domains, it is however not possible to implement the en-
tire data acquisition and analysis workflow based on Java,
MapReduce, and database abstractions. Porting many exist-
ing image processing tools to native Hadoop applications
would not be feasible in many cases. As data-intensive
computing frameworks provide the only realistic way to
set-up large-scale archives and repositories, it is required to
develop approaches that support legacy application integra-
tion. ToMaR has been developed to provide efficient legacy
application integration for large-scale content and has been
used to help analyzing content from major content providers.
Other generic approaches like the Hadoop Streaming API
have been very helpful to implement different steps of
data analysis workflows but could not be used for legacy
code integration. The Hadoop Streaming API, for example,
supports the integration of scripts, IO pipes, Unix filters,
and the automated generation of MapReduce jobs but lacks
the support for legacy application integration. The Hadoop
framework is designed to process input based on key/value
pairs by automatically interpreting and splitting the input
data. While this works perfect for processing text, it makes
it difficult to process binary data. The Hadoop steaming API
uses streams to read/write from/to HDFS but cannot be used
with native applications that do not support IO streaming or
HDFS file pointers. ToMaR is designed to support a number
of different protocols for integrating legacy applications. It is

obvious that optimized MapReduce applications can achieve
a higher throughput than a generic wrapper that must handle
the coordination of decoupled OS processes. However, by
leveraging the Hadoop execution environment, ToMaR has
proven to be scalable, robust, and with good performance for
implementing many real world application scenarios where
payloads are simply too big to be computed with existing
applications on a single machines.

IV. U SERCASE: WEB ARCHIVE ANALYTICS

A. Problem Statement

The Austrian National Library (ONB) collects the web-
pages within the domain .at, pages that are geographically
sited in Austria, and also pages that have a specific connec-
tion with Austria. The ONB Web archive7 presently amount
so 32TB of data containing about1.3× 10

9 resources. Web
archiving software like for example the Internet Archive’s
open-source Heritrix platform [13] can perform crawls in
a distributed environment, considering different crawling
strategies (focused, broad, experimental) and crawling poli-
cies. The crawled data is written to web archive container
formats like the ARC or WARC File Format (ISO 28500)
which hold the harvested data.

An interest of Web archives is to analyze trends in the size
and content of the Web. The termweb content characteriza-
tion refers to the extraction of properties from web archives.
A number of characterization tools exist that are commonly
used in the digital library and archiving domain. However,
only a sub-set of those tools are available as self-contained
Java API, as for example the Apache Tika library8. The
File Information Tool Set (FITS)9 identifies, validates, and
extracts metadata for various file formats. FITS wraps sev-
eral third-party open source tools and produces normalized
and consolidated output in the form of XML files. Although
written in Java, FITS creates dependencies on a variety of
libraries and file paths when being installed, as it works as
an umbrella for a number of underlying software packages.
Here, we report results from an experiment carried out be
the ONB that applies FITS on sample data from the ONB
Web archive. FITS has been selected by the ONB as the
tool kit is of great interest for many people working in the
archiving domain but difficult to handle at scale.

B. Workflow Development

For the presented experiment, ToMaR is used in concert
with several software packages in order to create a profile
of web archive content. The general idea of the workflow
is to extract the content of ARC containers residing on
HDFS. Per container, tens to hundreds of thousands of flat
files with generic file names are generated. FITS is used to

7web site: http://www.onb.ac.at/ev/about/webarchive.htm
8available at: https://tika.apache.org
9available at: http://code.google.com/p/fits/



Figure 4. Web Archive FITS Characterization using ToMaR, available on
myExperiment: www.myexperiment.org/workflows/3933.

generate a metadata file for each resource that is used for
subsequent content profiling. The extracted resources can
be deleted from HDFS once the metadata files have been
generated. For the experiment, Taverna has been used as
the workflow management system [14] and used to submit
and orchestrate jobs to the ONB development cluster. The
workflow in figure 4 uses several SCAPE outcomes to create
a profile of web archive content. It shows the complete
process from unpacking a web archive container file to
viewing aggregated statistics about the individual files it
contains using the profiling tool C3PO10. The workflow uses
the Hadoop application Spacip11 to unpackage the ARC
container files into HDFS and to create the input file which
is subsequently used by ToMaR.

The inputs of this workflow are defined as follows:

• c3po˙collection˙name: The name of the C3P0 collection
to be created.

• hdfs˙input˙path: A Hadoop Distributed File System
(HDFS) path to a directory which contains text file(s)
with absolute HDFS paths to ARC files.

• num˙files˙per˙invocation: Number of items to be pro-
cessed per FITS invocation.

• fits˙local˙tmp˙dir: Local directory where the FITS out-
put XML files will be stored

FITS comes with a command line interface API that
allows a single file to be used as input to produce the FITS
XML characterization result. However, if started individually
for for each file in the web archive, the start-up time of
FITS including its sub-processes would result in a poor
performance which is not applicable to the problem size.
For the experiment, FITS was instead used in recursive mode
using ToMaR’s support for multiple input files per operation,
which improved the performance dramatically.

10available at: https://github.com/peshkira/c3po
11available at: https://github.com/shsdev/spacip

Figure 5. Execution times for a varying number of files in a record, which
are handled by a single map invocation.

C. Tuning the Input File

The question how many files should be processed per
FITS invocation was addressed by an experiment. The work-
flow presented above has been embedded in a new workflow
in order to generate a test series. A list of 40 values, ranging
from 10 to 400 in steps of 10 files to be processed per
invocation. Taverna was used to iterate over the list of input
values by combining the input values as a cross product and
launching 40 workflow runs for the embedded workflow. 5
ARC container files with a total size of 481 Megabytes and
42223 individual files were used as input for this experiment.
The 40 workflow cycles were completed in around 24 hours
and led to the result shown in figure 5. The evolution of the
execution time of the average and worst performing tasks per
record shows linear characteristics, as illustrated in figure 6.

D. Performance on the Cluster

The cluster used in this experiment has one controller
machine (Master) and 5 worker machines (Slaves). The
master node has two quad-core CPUs (8 physical/16 Hy-
perThreading cores) with a clock rate of 2.40GHz and 24
Gigabyte RAM. The slave nodes have one quad-core CPUs
(4 physical/8 HyperThreading cores) with a clock rate of
2.53GHz and 16 Gigabyte RAM. Regarding the Hadoop
configuration, five processor cores of each machine have
been assigned to Map Tasks, two cores to Reduce tasks,
and one core is reserved for the operating system. This is
a total of 25 processing cores for Map tasks and 10 cores
for Reduce tasks. The best result achieved on the cluster
was an execution time of about 30 minutes (1782 seconds)
which, while a the execution on a single worker node took
about 9 hours (32148 seconds). As shown in figure 5,
ToMaR’s overall execution time automatically stabilizes at
an execution time of about 30 minutes for a record size
between 150 to 350 web resources. Overheads introduced
by application are negligible in this area.



Figure 6. Evolution of execution time per operation for a varying amount
of processed files.

V. CONCLUSION

Hadoop provides scalability, reliability, and robustness
supporting the processing of very large volumes of un-
structured data that does not fit on a single machine. Data
and applications must however be made compliant with
the execution environment and programming model. Our
intention was to provide a generic MapReduce application
allowing content providers like libraries and archives to
execute legacy applications on a Hadoop cluster in a similar
way like done in a desktop environment. This functionality is
in particular required to generate large volumes of metadata
from binary content which can then be imported to an
archival information system or data warehouse using well
know data-intensive computing techniques. The application
has been utilized by major institutions with large volumes
of high-resolution scans of digitized books, millions of web
archive resources, as well as with scientific data from large-
scale facilities in the context of the EC project SCAPE. The
major design goal of ToMaR is firstly to provide flexibility
so that various applications coming from different content
domains can be integrated in a way that they run efficiently
on a cluster, and secondly to generate data that is integrated
and directly usable with data-intensive computing frame-
works like provided by the Apache Hadoop eco-system.
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