
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2000; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Component-Oriented

Application Construction for

a Web Service Based Grid

Rainer Schmidt, Siegfried Benkner, Ivona Brandic
and Gerhard Engelbrecht

Institute of Scientific Computing, University of Vienna
Nordbergstrasse 15/C/3, 1090 Vienna, Austria

SUMMARY

We present the architecture and prototype implementation of a component-oriented
programming environment for a Web service based computational Grid. As middleware,
we utilize the Vienna Grid Environment (VGE), a framework that enables the provision
of compute-intensive parallel applications as configurable, QoS-aware Grid services. Our
component model follows the Common Component Architecture and models application
Web services as distributed components. We describe a component framework that
integrates VGE services with a component model allowing to express and dynamically
manage application and performance meta-data as well as dependencies on the
infrastructure or other components. Furthermore, we show how the client programming
interface is used to compose Grid applications from abstract application components that
are mapped against available Grid services by the component framework at runtime.

key words: component-based programming, compute-intensive Grid applications, performance

related meta-data, CCA, Web services

1. INTRODUCTION

The adoption of Web service technology for Grid computing environments has been a major
research issue in recent years providing defined access mechanisms for distributed resources
based on Web service standards like XML, SOAP, and WSDL. This development has been
motivated by the Open Grid Service Architecture (OGSA) [13] and became apparent with
the evolution of the Globus Toolkit [18] towards adopting Web service technology and the

∗Correspondence to: Rainer Schmidt, Institute of Scientific Computing, University of Vienna,
Nordbergstrasse 15/C/3, 1090 Vienna, Austria.
†E-mail: rainer@par.univie.ac.at

Copyright c© 2000 John Wiley & Sons, Ltd.

2 R. SCHMIDT ET AL.

recent implementation of the Web Service Resource Framework (WSRF) specifications [31].
The employment of a service-oriented architecture provides ways to cope with a changing
environment as resources can be dynamically discovered by service consumers. A typical client
programming pattern would therefore comprise finding a service in a registry (1), binding to a
specific transport protocol (2), and invoking the service (3). As described in [12], service-based
Grid infrastructures mostly comprise various collaborating services providing capabilities like
security, information, data or resource management. In contrast to Web services typically
deployed in areas like business-to-business commerce, it cannot be assumed that services
in a Grid environment are always fully self-contained and agnostic of their surrounding
infrastructure as they may have dependencies on other services resulting in an increased
complexity for service configuration and access. Web services do not provide a notion for
describing such dependencies as services appear self-contained to the user and only expose
their provided interfaces.

Graphical problem solving environments [27] often utilize component abstractions that allow
users to compose applications by connecting input and output parameters of the execution
units. This abstraction appears more natural to the user rather than dealing with a service-
oriented architecture. In order to reduce complexity it is furthermore desirable to compose
applications based only on components that are relevant to the problem the user addresses
- thus, to provide the user with computational components (e.g. a solver) while hiding
infrastructure related entities (e.g. a service to access authorization lists). We therefore target
a plug-in environment that allows developers to construct applications by connecting ports of
computational components while the component framework handles connections that result
from context dependencies automatically.

We present a prototype implementation of a component environment that is based on
the Common Component Architecture (CCA) [4]. The system models HPC application Web
services as distributed components and provides a component integration framework realized
as Web service. The framework integrates application Web services with the component
model and exposes a builder interface for component-based Grid application construction.
Components may dynamically register provided interfaces and dependencies as well as proxy
implementations and meta-data descriptions with the component framework. Application
developers may compose Grid applications from abstract application components that are
mapped against the available Grid resources by the component framework at runtime.

As Grid middleware our system utilizes the Vienna Grid Environment (VGE) [6], a Grid
infrastructure for the provision of HPC applications as Grid Services over standard Web service
technology. VGE services provide generic interfaces for remote job execution, monitoring, error
recovery as well as for application level QoS support. The VGE service provision framework
has been utilized in the GEMSS Project [17] for the Grid provision of time-critical medical
simulation services [7] incorporating various compute intensive methods such as Finite-element
Modeling and Monte Carlo simulation. Most of these applications consist of various steps of
execution for example mesh generation, data analysis, or visualization, which can be deployed
separately using VGE. Key aspects of VGE include QoS support for time-critical service
provision, support for business models as well as end-to-end security.

The structure of this paper is as follows: We give a brief overview of the Common Component
Architecture in section 2; The VGE service provision framework and QoS support mechanisms

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

COMPONENT-ORIENTED PROGRAMMING FOR WEB SERVICE GRIDS 3

are explained in section 3; The overall system architecture is presented in section 4; Section 5
deals with the Grid programming model and exemplifies the client API; Related work is
presented in section 6; Finally, conclusions and future work are presented in section 7.

2. THE COMMON COMPONENT ARCHITECTURE

Component-based software development based on commodity frameworks such as JavaBeans,
EJBs, COM, DCOM, or CORBA is a broadly accepted practice for building business
applications. The Common Component Architecture (CCA) specification developed by the
CCA Forum [9] provides a component model designed for applications construction in high-
performance computing. The fundamental problem addressed is the dynamic composition of
applications based on encapsulated pieces of heterogeneous 3rd party legacy codes. CCA is a
lightweight, interface-based specification defined in Scientific Interface Description Language
(SIDL), which provides support for scientific data types (e.g. dynamic multi-dimensional
arrays, complex numbers) and language interoperability.

The CCA component programming model is (similar to the CORBA Component Model)
based on connecting components by means of provided ports (provides ports) and accepted
ports (uses ports), expressing dependencies. Components are not viable by themselves and
therefore have to be integrated with a framework that controls the component’s life-cycle and
interactions. A CCA component framework exposes (among others) a defined set of operations
for dynamic registration and retrieval of component ports. Components may register their
provided interfaces as well as dependencies and associated properties, which are stored in a
repository. Each component must implement an additional component interface required to
interact with the component framework over a callback mechanism. As the CCA specification
does not define implementation details, frameworks for massively parallel hardware [1] as well
as for distributed Grid environments [15] are being developed.

Application construction is established via the builder service, a component-based
application programming interface (API), providing operations for the instantiation of
component types, component and port introspection, as well as component interconnection.
During application execution the individual components may be in different phases and
loaded dynamically. The builder service furthermore provides operations for application
decomposition and component destruction. For more information on the Common Component
Architecture the reader is referred to [9].

3. THE VIENNA GRID ENVIRONMENT

The Vienna Grid environment is a service-oriented Grid infrastructure for the on-demand
provision of HPC applications as Grid services and for the construction of client-side
applications that access Grid services. The VGE service provision framework is based on a
generic application service model and automates the provision of HPC applications as services
based on standard Web service technology such as SOAP, WSDL, WS-Security. VGE utilizes
the open-source frameworks Tomcat and Axis [3, 2] for service hosting and deployment. As a

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

4 R. SCHMIDT ET AL.

key feature, VGE supports a flexible QoS negotiation model where clients may dynamically
negotiate QoS guarantees on execution time and price with potential service providers. For
the construction of advanced client-side applications a high-level application programming
interface (API) that hides the complexity of accessing Grid services is provided.

VGE has been utilized and evaluated in the context of the EU Project GEMSS [17], which
developed Grid middleware and a testbed for medical simulation applications. Within GEMSS,
six medical Grid service prototypes have been realized including the applications maxillo-
facial surgery simulation, neuro-surgery support, radio-surgery planning, inhaled drug-delivery
simulation, cardio-vascular simulation and advanced image reconstruction. These applications
rely on compute intensive methods such as Finite-Element Modeling, Monte Carlo Simulation,
and Computational Fluid Dynamics and consist of various steps of execution (mesh generation,
data analysis, visualization), which can be deployed separately as VGE Grid services.

3.1. Generic Application Services

VGE services encapsulate native HPC applications, usually parallel MPI codes running on
a cluster, and expose their functionality via a set of common operations for job execution,
job monitoring, data staging and error recovery. In addition, VGE services may be configured
in order to offer QoS guarantees with respect to execution time or price. VGE services are
compiled from a set of services during deployment and exposed as a single application service
by means of a composite WSDL document.

• The file handling service provides operations for uploading and downloading
input/output data based on files. Support for direct data transfer between services is
provided by corresponding push and pull operations. VGE uses file transfer via SOAP
attachments for data exchange instead of communicating via XML encoded documents.

• The job execution services provides operations for launching and managing remote
jobs by interfacing with a compute resource manager.

• The QoS negotiation service enables clients to dynamically negotiate various QoS
guarantees such as execution time and price on a case-by-case basis. Resulting QoS
contracts between service provider and client are formulated as Web Service Level
Agreements [30] (WSLA) and go along with advance resource reservations.

• The monitoring service generates structured data regarding the application status
and information gathered by individual monitoring scripts.

• The error recovery service provides support for checkpointing, restart, and migration,
if supported by the application.

3.2. Service Provision Framework

The VGE service provision framework automates the task of transforming HPC applications
into Grid services. VGE services are configured by descriptors, based on XML schemes,
regarding the underlying application, security, and the exposed functionality. The framework
provides tools that assist the user in generating the XML descriptors and packaging and

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

COMPONENT-ORIENTED PROGRAMMING FOR WEB SERVICE GRIDS 5

<application>
 <description>
 <version>...
 <configuration>
 <working−directory>
 <path>/home/...</path>
 </working−directory>
 <input−files>
 <file><name>TiH2.in0</name><format>...
 ...
 <output−files> ...
 <job−script> ...
 </configuration>
 <qos>
 <request−parameters>
 <param>mesh−size</param><param>#iterations</param>...
 <machine−parameters>
 <number−of−nodes><param>1</param><param>4</param>...
 ...
 <provider−parameters>
 <compute−resource−manager−class>at.ac.univie.iss...
 <performance−model−class>at.ac.univie.iss.apm...
 ...
</application>

Figure 1. Example Application Descriptor

deploying the application services. The application descriptor is an XML document that
provides meta-data about an existing HPC application and the computational resource it
is installed on. It constitutes the application specific part of the service description, which is
mapped against the generic methods by the service provision framework.

Figure 1 shows a simplified excerpt of an application descriptor providing structured data
about the underlying resource. It specifies a working directory that is used for storing transient
job execution data (e.g. i/o data, status files) within generated session directories. Furthermore,
information on input/output files (name, data-format), a script for initiating job execution, and
scripts for gathering status information have to be provided. The compute-resource-manager
element may be used to specify an interface to a job scheduler. Currently NEC’s COSY [10]
and the MAUI [26] scheduler are being utilized. To enable QoS support, a set of request and
machine parameters (e.g. number of nodes) as well as a performance model have to be provided.
The performance model is parameterized with the request parameters(mesh size, number
of iterations), which have to be provided by the user for QoS negotiation. The application
descriptor contains application meta information also relevant to service composition like
QoS properties, input/output files and data formats - and therefore is incorporated with the
component system described in the following sections.

3.3. Dynamic Application Configuration and QoS Support

VGE services may by configured to offer QoS guarantees on execution time or price based on
a QoS module and meta-data dynamically supplied by the user. The QoS module comprises
a QoS manager, a compute resource manager, a performance model and optionally a Pricing

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

6 R. SCHMIDT ET AL.

model. For obtaining a Qos offer the client may specify a QoS descriptor containing QoS
constraints (e.g. max. execution time) and a request descriptor containing meta-data describing
a job request. For a FEM simulation a request descriptor would typically contain the size of
the finite-element model, the number of iterations to be performed etc.

In order to provide guarantees on application execution time, the VGE QoS module requires
an application-specific performance model and a compute resource manager supporting
advance reservation. As input the performance model takes the request descriptor and a
machine descriptor specified by the service provider at deployment time. The machine
descriptor describes the computational resources (e.g. number of processors), which may be
provided for an application. This meta-data is fed into the performance model to obtain an
estimate for the required execution time. It interacts with the compute resource manager
to check whether a reservation of the required resources can be made within the required
time frame. If these requirements are met, a temporary resource reservation (with short
lifetime) is made and a corresponding QoS offer in form of a Web Service Level Agreement [30]
(WSLA) document is issued to the client. Only when the client, which usually negotiates with
multiple service providers, confirms an offer, a signed QoS contract in the form of an WSLA
is established. Temporary reservations for offers that are not confirmed by the client expire
within a short time frame. When a client has successfully negotiated the required QoS with a
service provider and a QoS contract is in place, the usual job execution phase can be entered,
this comprises the invocation of service operations for uploading the input data, for starting the
job execution and for downloading the result. In order to support direct data transfer between
services, corresponding push and pull operations are supported as well. The generic QoS
module of VGE enables the provision of parallel applications as dynamically configurable Grid
services. Depending on the requirements of a client, an application may be executed on many
processors in short time but for a higher price, or it may be executed on a few processors with
a lower price. The VGE QoS mechanisms provide means for qualitative service description,
which may be used for automatic resource selection.

4. A SERVICE BASED COMPONENT FRAMEWORK

The basic idea behind this work is to embed distributed Web service resources into a component
model for creation, introspection, and composition. In general, Web services are highly self-
contained as they only expose technical interface descriptions for accessible ports but do not
provide means to specify dependencies on the hosting environment or on other services. This
characteristic has the advantage that standalone applications can be easily made available as
services but causes drawbacks regarding deployment and composition. A simple application
composition scenario and possible resulting dependencies is shown in Figure 2. We distinguish
between two classes of dependencies: Explicit dependencies that result from connections
drawn directly by the application developer (e.g. a connection between reconstruction and
visualization service) and implicit dependencies that are caused by the Grid infrastructure
(e.g. an application service dynamically requesting authorization lists from a security service).
We therefore target a component-based programming environment that allows the user to

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

COMPONENT-ORIENTED PROGRAMMING FOR WEB SERVICE GRIDS 7

Figure 2. Explicit and Implicit Service Dependencies

construct Grid application by interconnecting application services based on ports while implicit
dependencies are handled transparently by a component framework.

Our environment provides VGE services to client programmers based on the CCA component
model and therefore uses mechanisms like provides/uses ports, component interface, framework
services and builder service. Hence, Grid services are modeled as components and Web
service invocations as connections among them. For integrating VGE application services
with the component model we implemented three additional software packages: A distributed
component framework that mediates between the service-oriented architecture and the
component programming model, a service library package providing interoperability between
the application services and the remote component framework, and a client programming API
for component based application construction.

Component-Based Composition with VGE services

VGE services basically allow to remotely execute native parallel applications preinstalled on
computational resources via a set of generic Web service interfaces. As scientific experiments
usually comprise multiple steps of execution VGE services may be composed into a larger
application assembly. Workflows are controlled by the client based on RPC calls e.g. for status
inquiry, as VGE does not provide a notification mechanism. VGE services can be connected
directly (in a peer-to-peer fashion) for data transfer using the client API. By integrating the
CCA connection model a VGE service may be remotely connected to arbitrary Web services
that have complementary CCA ports. Such connections may be constructed for example with
security services, registries, or remote data bases for logging and checkpointing. Connections
may be explicitly triggered by the client applications via a method call (e.g. data push)
if they are time/state dependent or they may be internally used by the component (e.g.
retrieving access lists). Component introspection allows a user to identify specific files which
can be downloaded (e.g. intermediary results) or being transferred using a file connection.
Figure 3 shows a typical setup we use for parameter studies. Using applications such as ant
colony optimization [5] or quantum dynamics simulation [8], a client (or a driver component)
may concurrently run tests with different input data sets on distributed hosts, whereas a
visualization takes place after a successful simulation has finished. The file connections between

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

8 R. SCHMIDT ET AL.

Client

Appli-

cation

f1(x)

f1(z)

f1(y)
 f2

time

Logging

Service

Figure 3. Composed VGE services: Concurrent parameter study (f1) and visualization (f2)

client, simulation (f1), and visualization (f2) are pushed by the user depending on the job
status and intermediary results. The connection between visualization (f2) and logging service
is implicitly used by the component on demand.

Dynamic Component Registration and Selection

Figure 4a shows the overall system architecture comprising a client application (cmp1,cmp2),
the remote component framework, and a set of services (s1, s2, s3). The component framework
is implemented as Web service and acts as broker between application demands and available
Grid services. It provides the CCA services interface allowing a Grid service to register
provided/required ports with the framework as well as request them dynamically at execution
time (a). We extend the VGE Web services with a component interface required to interact
with the framework. Furthermore, we provide an application builder interface used by the client
environment to construct and execute a component based application. The client application
may consist of several components that can be described, instantiated, connected and invoked
using the builder service. The framework locates the services on behalf of the client application
at execution time (b) based on component descriptors. If a service is selected, the framework
delivers information required for component introspection (e.g. supported ports, wrapped
application, QoS attributes) and component interaction (component handle, proxy) (d) back
to the requestor (c).

Dynamic Proxy Handling

Our component framework maintains a proxy repository used to provide the client environment
with high flexibility concerning component specific libraries. The idea is to enable client
applications to stay compliant with different versions of VGE services, dynamically retrieve
proxy updates, and also be able to incorporate non-VGE services. We therefore extended the
Java classloader mechanism with a dynamic proxy pattern that allows the client developer

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

COMPONENT-ORIENTED PROGRAMMING FOR WEB SERVICE GRIDS 9

s1

s2

s3

Component

Framework
cmp2

cmp1

(a)
 (a)
 (a)

(b)

(c)

(d)

C

l
i
e

n

t

-

A

p

p

l
i
c

a
t

i
o

n

Client

Framework

service

Application

Service

createInstance()

Component

getProxy()

Proxy

execute()

(a) (b)

Figure 4. (a) General System Architecture (b) Dynamic Proxy Mechanism

to program against a port interface and dynamically access remote libraries via a framework
service at runtime (Figure 4b).

If a port is registered with the component framework it may be associated with a
proxy implementation that can be uploaded to the framework. At execution time the client
environment contacts the framework services in order to find a component and fill the client-
side representations with substantial runtime information (e.g. component handle, supported
ports, proxy class name, class loader). Invoking a method on a component port causes the
runtime engine to generate a call from the client to a service using the local code base. If the
invocation fails or the component is unknown to client-side code repository, the Java classloader
dynamically loads a proxy file from the framework where the component is registered. The
mechanism of interface based service discovery and proxy lookup, which we have applied to
Web services, is well known from Jini [29] based systems.

5. COMPONENT-BASED GRID PROGRAMMING MODEL

The client programming environment is currently provided as a Java API and based on the
CCA builder service interface. It offers a component-based programming model that allows
the client-side construction of composite Grid applications based on composable entities. The
available resources are virtualized behind the component abstractions and are selected by
the component framework during application execution. This section describes elementary
concepts and operations provided by the client environment.

5.1. Application Programming Concepts

Describing the Component: As resources offered via Grid Services (especially if they
have generic interfaces) cannot be specified by class or interface names uniquely, it
is required to describe them also by their characteristics. For our environment, VGE

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

10 R. SCHMIDT ET AL.

components can be described by associated meta-data such as name and version
of the underlying application, input/output data format, and, if supported, by QoS
attributes like execution time. To also allow the integration of non-VGE services into
the environment (e.g. a database adaptor) it is further required to specify the interfaces
a component has to provide. Such a programming model provides the advantage that
the described resources can be virtualized by the framework and selected at runtime on
behalf of the client.

Component Creation: The createInstance() method generates a component object
based on a component descriptor. The client application therefore uses the builder
service to retrieves a handle to a service and optionally proxy code from the component
framework. Invoking this method further causes the creation of a client session at the
computational resource by a VGE service. These components are being identified by a
ComponentId consisting of the service handle and a session identifier.

Component Connection: Web Service Components may implicitly request other
components or can be connected explicitly by the client application using the connect

operation. In order to enable remote connections, a component has to expose a builder
interface allowing to inject a handle to a called component. Connections between VGE
components can be seen similar to pipes within a Pipe-And-Filter architecture. After
an application has processed and indicates that it is finished the output files are piped
to the target service by calling a push() operation. The component object provides
attributes that allow the client to introspect the component in order to obtain information
specified within the corresponding application descriptor. These properties may be used
to distinguish between files and attach multiple connections to a component.

Invoking Provides Ports: Components provide direct access to their provides ports via a
generic getProxy operation. The component therefore generates a proxy for a provides
port of a component that is represented as an object of the requested interface data
type. This port abstraction allows to invoke an interface provided by a remote service
and may automatically contact the component framework for a proxy implementation if
it is unknown to the client.

Decomposing the Application: The operation destroyInstance() destroys the compo-
nent within the client application and invalidates the session at the target resource.
Destroying the client session at the computing resource will automatically delete all
permanently stored files and resource reservations.

5.2. Application Composition and Execution

The application programming interface should, in general, not be directly provided to
application developers but serve as interface for higher-level development environments. End-
users may compose applications by utilizing a scripting interface or a visual composition
environment. A major design goal for the API is the formulation of abstractions and
mechanisms that allow to describe a composite Grid application based on application

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

COMPONENT-ORIENTED PROGRAMMING FOR WEB SERVICE GRIDS 11

components, ports, and connections. Hence, the client application constitutes an abstract
program description that has to be mapped against applicable Grid resources at runtime.
Furthermore, it has to be considered that most composite applications may not run
autonomously but require user interaction like status inquiries and component introspection
on files, formats, etc. Overall, we assume that HPC application provision is based on the VGE
middleware, a common Grid security infrastructure is in place, and that application meta-data
descriptions follow a common schema.

A code fragment for component description and instantiation using the client API is shown in
Listing 1. The component is described based on a set of ports it has to provide (job handling,
QoS support) using a generated interface descriptor and a set of attributes assigned to
predefined constants. The interface descriptor allows e.g. to distinguish between VGE services
providing different sets of ports (section 3.1) but in general may be used to specify arbitrary
Web services (e.g. a DB adaptor). The value ”SPECT” refers to the name of the application
exposed by the VGE service, which is specified in the application descriptor. QoS support in
VGE provides a valuable feature for qualitative service description. Components that provide a
QoS negotiation port may therefore be additionally described by QoS attributes. The method
createInstance performs a component selection based on the component description and - if
supported - a QoS negotiation. Component creation furthermore goes along with the creation
of a corresponding client session and optionally a resource reservation at the service.

//Listing 1: component description and creation

portDsc.addProvidesPort(vge.JobHandlingInterface.class);

portDsc.addProvidesPort(vge.QoSModuleInterface.class);

compDsc.addPortDesc(portDsc);

compDsc.addProperty(CConst.APP, "SPECT");

compDsc.addProperty(CConst.QoSDsc, qosDsc);

compDsc.addProperty(CConst.ReqDsc, reqDsc);

Component comp = builder.createInstance(def);

Component ports have to be interoperable technically as well as semantically in order
establish a working connection among them. For technical interoperability the framework
provides support for dynamic proxy loading using the component repository described in
section 4. In order to enhance interoperability, the programming model provides introspection
capabilities allowing to retrieve meta-data on the applications and input/output data (e.g.
application, version, files, formats) specified within the application descriptor.

In Listing 2, two VGE components are connected by file handling ports. The components
are therefore introspected concerning their supported provides and uses ports. A connection
can be established using the connect operation and a complementary pair of ports. A
data connection furthermore requires to be provided with the specific files to transfer. The
application developer therefore may introspect the components on available input/output files
as well as request additional file information such as type and format. VGE file connections
are triggered explicitly by the user by invoking a corresponding push operation.

//Listing 2: file transfer connection

port uport1 = comp1.getUserPort(fileHandlingPortDsc);

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

12 R. SCHMIDT ET AL.

port pport2 = comp2.getProvidesPorts(fileHandlingPortDsc);

Connection con1 = builder.connect(comp1, uport1, comp2, pport2);

con1.setProperty(CConst.TDATA, comp1.getProperty(CConst.OUTFILE)[0]);

builder.push(con1);

The composite Grid applications, we are targeting, usually comprise various steps of
execution accomplished by loosely-coupled applications services. These programs require
explicit interaction by the user to inquire status and intermediate results, or to access custom
application ports. For these reasons we offer mechanisms to directly access provided component
ports by a client through a proxy object. In Listing 3 proxy objects for VGE job steering
and monitoring ports are requested and used for a direct method invocation.

//Listing 3: direct access to component ports

vge.JobHandlingInterface job = (...) ppJob.getProxy();

vge.MonitoringInterface monitor = (...) ppMon.getProxy();

job.start();

while(monitor.getJobStatus() != State.FINISHED) {

// ...

}

6. RELATED WORK

In this section we give a brief overview on some related projects addressing distributed,
component-based scientific computing.

The GrADS [22] project is developing an architecture and software environment (GRADSoft)
for distributed and heterogeneous computing of scientific applications within a computational
Grid. It provides a program preparation and closed-loop execution system supporting
technologies like compiler analysis, resource negotiation, runtime performance analysis and
optimization, and continuous monitoring. The system targets to provides a continuous process
of adapting an application to a specific problem instance and a changing environment in
order to maintain the overall performance. Applications are therefore being encapsulated
as configurable object programs and provide performance contracts stating the expected
performance of the application modules. The runtime environment configures the object code
based on the available resources and may interrupt and reconfigure the application during
execution. The VGrADS [28] project extends GrADS in terms of usability and introduces the
abstraction of Virtual Grids. Vgrids are described by a resource specification presented by an
application and submitted to a Virtual Grid Execution System for dynamic resource selection.

The ICENI [24] framework provides scientific computing based on performance aware
components over distributed resources. The system maintains component meta-data
concerning component meaning, behavior, implementation, and performance characteristics.
Through separation of concerns it can maintain multiple implementations for a given
abstraction. The scheduling architecture provides performance prediction, reservation and
workflow aware scheduling, which allows ICENI to select optimized combinations of component

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

COMPONENT-ORIENTED PROGRAMMING FOR WEB SERVICE GRIDS 13

implementations. ICENI is based on a service-oriented architecture and has been implemented
on top of Jini, JXTA, and OGSI.

Triana [27] is a distributed problem-solving environment that allows to compose applications
from a set of components using Grid as well as peer-to-peer computing. It provides a graphical
composition interface and writers/readers for choreography languages like BPEL4WS and
Triana XML. Triana is middleware independent through the use of the Grid Application
Toolkit (GAT) [16]. GAT has been developed within the GridLab project and provides a
high-level Grid API with bindings for various middleware implementations (Web services,
Globus, JXTA).

XCAT3 [25] is a distributed, CCA implementation written in Java that allows component-
based Grid application construction based on CCA and OGSI compliant Grid services. For
remote component instantiation XCAT supports Globus GRAM [18] via the Java CoG kit [19]
as well as ssh, and uses XSOAP [32] as communication protocol. An XCAT C++ [21]
implementation that uses the Proteus multi-protocol library as communication substrate is
currently under development [11]. LegionCCA [20] is a distributed CCA implementation that
maps distributed Legion objects as CCA components by linking them against a specific library.

Both, XCAT3 and the work presented in this paper are utilizing Web services technology
for hosting and connecting distributed components based on CCA. The systems target related
problem domains but differ in many aspects of design and their application, which is briefly
discussed in the following paragraph:

XCAT3 basically implements a CCA component as a set of Grid services that represent
the component and its associated provides ports, stubs are dynamically registered with the
framework and represent the uses ports. XCAT3 allows custom components being written and
created locally or remotely at runtime. A client application e.g. in form of a Jhyton script may
furthermore use the builder service API to remotely connect corresponding component ports,
execute component assemblies, or directly invoke ports. The XCAT3 implementation has been
utilized with several applications and scenarios [14] [33].

The system described in this paper maps CCA concepts to a Grid based on VGE application
Web services. We model an application service as component, the exposed Web service ports
as provides ports, and dependencies on other Web services as uses ports. VGE services are
being deployed once and may then be used by multiple clients simultaneously as they are
multi-threaded and session based. We therefore provide a globally accessible CCA framework
service that serves as registry and broker for deployed components, ports, and proxies. A major
difference to XCAT is that VGE application services are typically connected via a generic
file transfer mechanism. Our client API provides a builder interface that allows remotely
connecting VGE services with each other as well as connecting them to ancillary Web services.
Data transfers between VGE services are activated by the client, other component connections
may be implicitly used and/or requested by the components.

7. CONCLUSIONS

We presented ongoing work on a programming environment that allows to construct complex
Grid applications from distributed, compute-intensive application components. Our system

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

14 R. SCHMIDT ET AL.

is based on the Vienna Grid Environment, a Web service based Grid environment that
enables the provision of parallel applications as QoS aware Grid services. We presented a
prototype implementation of a component framework that is based on the Common Component
Architecture, and able to integrate Grid services with a component model for managing
context dependencies and dynamic resource selection. Application construction is based on
a programming model that allows to specify components based on meta-data description and
performance-related QoS constraints. As the system is still in an early stage, we plan to make
further improvements by experimenting with scenarios from various scientific domains.

REFERENCES

1. Benjamin A. Allan, Robert C. Armstrong, Alicia P. Wolfe, Jaideep Ray, David E. Bernholdt and James
A. Kohl. ”The CCA Core Specification in a Distributed Memory SPMD Framework.” In Concurrency :
Practice and Experience, 14(5):323-345, 2002.

2. Apache Axis. http://ws.apache.org/axis/.
3. Apache Tomcat. http://jakarta.apache.org/tomcat/.
4. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and B. Smolinski.

”Toward a Common Component Architecture for High-Performance Scientific Computing”, Proceedings
of the High-Performance Distributed Computing Conference, August 1999, pp. 115-124.

5. S. Benkner, K.F. Doerner, R.F. Hartl, G. Kiechle, M. Lucka. ”Cooperative Ant Colony Optimization on
Clusters and Grids”, Proceedings International Workshop on State-Of-The-Art In Scientific Computing,
PARA 04, Lyngby, Denmark, June 2004.

6. S. Benkner, I. Brandic, G. Engelbrecht, R. Schmidt. ”VGE - A Service-Oriented Grid Environment for
On-Demand Supercomputing”, Proceedings of the Fifth IEEE/ACM International Workshop on Grid
Computing (Grid 2004), Pittsburgh, PA, USA, November 2004.

7. S. Benkner, G. Berti, G. Engelbrecht, J. Fingberg, G. Kohring, S.E. Middleton, R. Schmidt. ”GEMSS:
Grid Infrastructure for Medical Service Provision”, Journal of Methods of Information in Medicine, Vol.
44, 2005.

8. J. Caillat, J. Zanghellini, and A. Scrinzi. ”Parallelization of the MCTDHF code”, Aurora Technical
Reports, 04-19 (2004), available at http://www.vcpc.univie.ac.at/aurora/publications/

9. The Common Component Architecture Forum. http://www.cca-forum.org/ [August 2005].
10. The NEC COSY Job Scheduling System. http://www.ccrl-nece.de/ falk/COSY/cosy.shtml.
11. Deger Cenk Erdil, Kenneth Chiu, Madhusudhan Govindaraju, and Michael J. Lewis. ”A Proteus-Mediated

Communications Substrate for LegionCCA and XCAT-C++.” In proceedings of Workshop on Component
Models and Frameworks in High Performance Computing, Atlanta, GA, June 22-23, 2005.

12. I. Foster, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist, R. Subramaniam,
J. Treadwell, J. Von Reich. ”The Open Grid Services Architecture, Version 1.0”, Global Grid Forum, 29
January 2005, http://www.gridforum.org/documents/GFD.30.pdf [August 2005].

13. I. Foster, C. Kesselman, J. Nick, S. Tuecke. ”The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration”, Globus Project, 2002. Available at
http://www.globus.org/research/papers/ogsa.pdf.

14. Dennis Gannon, Sriram Krishnan, Liang Fang, Gopi Kandaswamy, Yogesh Simmhan, and Aleksander
Slominski. ”On Building Parallel and Grid Applications: Component Technology and Distributed
Services”, Challenges of Large Applications in Distributed Environments, CLADE 2004, June 2004.

15. Dennis Gannon, Randall Bramley, Geoffrey Fox, Shava Smallen, Al Rossi, Rachana Ananthakrishnan,
Felipe Bertrand, Ken Chiu, Matt Farrellee, Madhu Govindaraju, Shriram Krishnan, Lavanya
Ramakrishnan, Yogesh Simmhan, Alek Slominski, Yu Ma, Caroline Olariu, Nicolas Rey-Cenevaz.
”Programming the Grid: Distributed Software Components, P2P and Grid Web Services for Scientific
Applications”, Journal of Cluster Computing, 2002.

16. Gridlab, Grid Application Toolkit. http://www.gridlab.org/WorkPackages/wp-1/index.html [August
2005].

17. The Gemss Project. http://www.gemss.de [July 2005].
18. The Globus Alliance. http://www.globus.org [August 2005].
19. The Commodity Grid (CoG) Kit. http://www.cogkit.org/ [August 2005].

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

COMPONENT-ORIENTED PROGRAMMING FOR WEB SERVICE GRIDS 15

20. Madhusudhan Govindaraju, Himanshu Bari, and Michael J. Lewis. ”Design of Distributed Component
Frameworks for Computational Grids.” In proceedings of The International Conference on
Communications in Computation, pp. 160-166, June 2004.

21. Madhusudhan Govindaraju, Michael R. Head, Kenneth Chiu. ”XCAT-C++: Design and Performance of
a Distributed CCA Framework.” The 12th Annual IEEE International Conference on High Performance
Computing (HiPC) 2005, December 18-21, Goa, India.

22. The Grid Application Development Software (GrADS) Project. http://www.hipersoft.rice.edu/grads/ [14
August 2005].

23. GSX (Grid Service eXtensions). http://www.extreme.indiana.edu/xgws/GSX/ [November 2005].
24. ICENI - Imperial College e-Science Networked Infrastructure. http://www.lesc.ic.ac.uk/iceni/ [August

2005]
25. S. Krishnan, D. Gannon. ”XCAT3: A Framework for CCA Components as OGSA Services” Proceedings

of the Ninth International Workshop on High-Level Parallel Programming Models and Supportive
Environments, April 2004, pp. 90-97.

26. Maui Cluster Scheduler. http://www.clusterresources.com/products/maui/
27. The Triana Project. http://www.trianacode.org/
28. The VGrADS Project. http://vgrads.rice.edu/ [August 2005].
29. J. Waldo. ”The Jini Architecture For Network-Centric Computing” Communications of the ACM,

42(7):76-82, July 1999.
30. Web Service Level Agreement (WSLA) Language Specification. http://www.research.ibm.com/wsla/WSLASpecV1-

20030128.pdf, IBM 2001-2003
31. OASIS WSRF TC. http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsrf [August 2005].
32. XSOAP toolkit. http://www.extreme.indiana.edu/xgws/xsoap [August 2005].
33. S. Zhou, W. Kuang, W. Jiang, P. Gary, J. Palencia, G. Gardner. ”High-Speed Network and Grid Computing

for High-End Computation: Application in Geodynamics Ensemble Simulations” Workshop on Component
Models and Frameworks in High Performance Computing (Compframe 2005), Atlanta, GA, USA, June
2005.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

