An Approach for Processing Large and
Non-Uniform Media Objects on
MapReduce-based Clusters

Rainer Schmidt and Matthias Rella

Austrian Institute of Technology, Donau-City-Strafle 1, 1220 Vienna, Austria
firstname.lastname[at]ait.ac.at

Abstract. Cloud computing enables us to create applications that take
advantage of large computer infrastructures on demand. Data intensive
computing frameworks leverage these technologies in order to generate
and process large data sets on clusters of virtualized computers. MapRe-
duce provides an highly scalable programming model in this context
that has proven to be widely applicable for processing structured data.
In this paper, we present an approach and implementation that utilizes
this model for the processing of audiovisual content. The application is
capable of analyzing and modifying large audiovisual files using multi-
ple computer nodes in parallel and thereby able to dramatically reduce
processing times. The paper discusses the programming model and its
application to binary data. Moreover, we summarize key concepts of the
implementation and provide a brief evaluation.

1 Introduction

Over the last years, major Internet companies have made their data centers
available to public users via cloud services. New resource provisioning models
(like PaaS, IaaS) evolved, allowing users to create and host applications that
utilize virtually unlimited back-end infrastructures. Cloud computing provides
a versatile technology that may be used just for storing data or to create ap-
plications that service massive user-requests. A popular web application that
uses cloud resources to render videos for user-selected digital content is provided
by Animoto !. This application gained attention in 2008 when it scaled from
about 50 to 4000 instances in less than a week in order to deal with massively
increasing user requests. Although supported by the enormous power of a cloud
infrastructure, it is a grand challenge to build a web application of that dimen-
sion. Most notably, one has to cope with the complexity of coordinating the
involved subsystems (like application servers, computing farms, and database
systems) in order to achieve scalability and robustness.

In this paper, we target a more generic approach to support the process-
ing of large volumes of digital content in cloud-based environments. We present

! http://animoto.com

research on applying a widely used programming model for data-intensive com-
putations to the problem domain of audiovisual (AV) data. The paper describes a
method and corresponding application for analyzing video archives based on the
MapReduce programming model [1]. The application automates data compres-
sion and decomposition by utilizing native codec libraries and parallel processing
based on file partitions. It can thereby take advantage of scalable computational
environments in order to speed up execution times and throughput. Users are
provided with full programmatic control over the processing logic (as opposed
to the execution of wrapped 3rd party applications). The application utilizes
Java-based abstractions for relevant concepts like containers, tracks, and frames
allowing one to easily implement and incorporate custom application logic. We
have implemented a set of examples that perform tasks such as applying filters
(e.g. for face recognition) or performing text extraction on a collection of arbi-
trary input video files. A range of use-cases that support digital libraries and
archives exist. Examples include error checking an repair of TV /video collec-
tions, the application of preservation actions, or the on-demand generation of
access copies for different client devices.

2 Data-Intensive Computing

2.1 Execution Environments

In 2004, Dean and Ghemawat introduced MapReduce [1], a programming model
and implementation that is capable of processing vast amounts of data on clus-
ters of commodity computers. Data is shared using a distributed file system
(GoogleFS) that provides a decentralized storage layer on top of local storage
disks, called a shared nothing architecture. Other data-intensive computing envi-
ronments include Apache Hadoop 2, Microsoft Dryad [5], and Nephele [11], which
provide a range of languages, programming models, and runtime implementa-
tions for processing data on large storage and computing networks. A major
benefit of utilizing such data processing environments compared to using low-
level parallel libraries (like MPI) is the automated synchronization and handling
of 1O operations. Within their application scope, these systems can efficiently
handle issues like workload distribution, coordination, and error handling. This
in turn enables users to easily implement extremely robust applications that can
be executed over thousands of simultaneously running nodes.

2.2 Processing Structured Data

Programming patterns like MapReduce and All-Pairs [6] are specifically designed
for implementing applications that perform operations on files-based and struc-
tured content. These programming models provide a small set of abstractions
allowing their users to express and execute data-intensive workloads. MapReduce
provides a relatively simple programming model that is based on two interfaces;

2 http://hadoop.apache.org/

one for distributing workload among the cluster nodes, and one for aggregat-
ing the results. The programming model has proven to be applicable to a range
of problems that deal with the processing of textual data (e.g. graph process-
ing and data mining). It has also been demonstrated that these programming
models are applicable to types of scientific applications, like loosely-coupled and
massively parallel problems, e.g. found in bioinformatics [4]. Data is typically
accessible via an underlying distributed file system, which provide distributed
and fault-tolerant storage. Database and data warehouse systems like HBase and
HIVE [10] have been built on top of Hadoop’s distributed file system (HDFS)
providing distributed data stores. These systems relieve the users from the bur-
den of creating applications based on the programming model primitives only
and allow them to perform more familiar database operations based on a query
language instead.

2.3 Application to Binary Data

A range of use-cases for processing archived binary content exist, these include
tasks like scaling, transcoding, and feature extraction of images, audio, and video
content. An example for handling binary data in an MapReduce application for
scientific data analysis is provided by Ekanayake et al. [3]. The authors describe
a MapReduce application that must combine different features from generated
binary histogram files. Apache Hadoop already provides basic support for pro-
cessing binary data like for example dealing with compressed input/output files
on the distributed file system. When handling large compressed text files (e.g.
for performing log file analysis), it is important to extract and process only parts
of the data in the map task. Specific binary formats (like Hadoop’s Sequence-
File) can provide an efficient intermediate representation for handling large data
volumes on HDF'S supporting serialization, compression, and splitting. However,
these binary formats are designed to provide storage representations that effi-
ciently encode large data sets. In order to process audiovisual data, it will be
important to implement suitable data abstractions as well as storage handlers
to directly access and decode natively binary data on the fly. Once these ab-
stractions are in place, users should be able to utilize the available abstraction
(like MapReduce) to easily implement data-intensive operation for processing
audiovisual content.

3 Architecture and Application Design

3.1 Approach to the Problem

In the literature, we found existing work that describes a strategy for transcoding
video data in a cloud computing scenario, called Split&Merge architecture [7].
The idea is to ensure fixed duration times for video encoding by scaling-up the
number of cloud nodes used to process chunks of data depending on the size of
the payload file. Here, we take a similar but more generic approach and focus

Mode 1 Mode 2 Mode 3

A1
A2
AV3

E—
local readfwrite

remote readfwrite

b

block size

VR RO | SRGS

Fig. 1. A data flow for processing audiovisual data using the MapReduce model. This
application takes m audiovisual (AV) input files as input and generates n AV output
files. In a first phase, the MapReduce framework create a set of mappers for each input
file and assigns them to file partitions (splits). The Mappers subdivide and process the
input splits based on interpretable binary chunks (records). For each record, a mapper
creates a set of intermediate output data streams which are grouped using keys (K),
representing (parts of) the input file. Reducers remotely read the intermediate data
streams and generate a result file for each key.

on its application to a widely used programming model (and corresponding exe-
cution environment). Designing an application around a standard programming
model in general, provides a number of well known benefits like encapsulation,
robustness, and portability. In large distributed systems like grids, clusters, or
enterprise systems it is key to employ defined programming and deployment
models in order to achieve speedup and scalability. The application presented
in this paper has been implemented using the MapReduce programming model
and Apache Hadoop as an execution environment.

3.2 Data Placement

Figure 1 shows a MapReduce application for processing a set of video files (AV1,
AV2, AV3). The files are available on Hadoop’s distributed file system (HDFS)
which provides a shared storage network across the worker nodes (nodel-3). Files
that are stored on HDFS are automatically broken up into blocks (typically of
64MB) and stored (and replicated) on different data node based on a placement
policy. During runtime, the execution environment facilitates the processing of
payload data by assigning parts of the data (called splits) to worker nodes. Input

splits are of the same size as storage blocks per default and Hadoop spawns one
map task for each split on a worker node. It thereby tries to assign map tasks
to workers that reside closely to the input splits in order to maximize local
read operations. A number of input splits may be accessed remotely by map
operations as the scheduling of map tasks is subject to load balancing.

3.3 Data Decomposition

In order to support the parallel processing of binary input data it is important
to provide suitable mechanisms to divide the data into parts that can be inter-
preted by the application. Most binary formats cannot be broken into chunks
at arbitrary positions or do not support splitting at all. For processing sets of
relatively small files one can overcome this problem by dividing the payload on
a per-file basis [9]. Audiovisual content however tends to be large and its pro-
cessing can easily become too resource demanding to be performed on a single
processor in a reasonable time frame. It is therefore desirable to process single
video files using multiple nodes in parallel in order to speed up the overall exe-
cution time. This is in particular important for applications that perform such
operations on demand based on user requests, for example when triggered via a
web interface.

Digital video images (frames) provide a natural unit for decomposing video
materials into independently processable parts. Video file formats (like AVI,
Flash, Quicktime) are however complex, containing a range of data streams
like audio, video or text tracks. The different tracks are typically compressed
based on a compression format (like mp3, h264, MJPEG) and must be decoded
before being interpretable. One approach to obtain video frames from input
splits is to migrate the data into an uncompressed format before processing it
within a parallel application [8]. However, the migration itself is a resource and
storage consuming process, which hinders the application of this approach for
large volumes of content.

The application presented in this paper supports the parallel processing of
video content directly from the compressed original formats. The idea is to
split videos at key frame positions and perform the decompression of the data
chunks in parallel within the MapReduce application. Video compression com-
bines image compression and temporal motion compensation in order to reduce
the amount of data required to encode video sequences. Key frames denote inde-
pendently encoded frames that do not depend on other video data to be decoded.
In order to split a media byte-stream into parts it is important to identify these
key frame positions within the media container. Using the Hadoop MapReduce
framework, we have implemented the required concepts (like input format, record
reader, compression codec) that support the automated splitting and parallel
processing of compressed media streams (section 4). This allows us to process
heterogeneous collections of audiovisual content directly from the storage loca-
tion without enforcing restrictions on the container and compression formats.

3.4 User Defined Functions

The MapReduce programming model allows users to write parallel applications
by implementing the functions map and reduce. Data portions are automati-
cally generated and passed between the map/reduce functions using a generic
data model based on key-value pairs. This programming model allows users to
easily implement parallel applications without having to deal with cumbersome
parallelization strategies. The model has been widely used for analyzing and
transforming large-scale data sets like text documents, database query results,
or log files that can reside on different storage systems [2]. In order to enable the
development of such user-defined function for processing audiovisual content,
we have identified two major requirements: (1) the framework must provide a
mechanism to generate meaningful records that can be processed within the
map function, and (2) the framework must provide the required abstractions
and mechanisms to analyze and transform the records.

decompress decode

adjust split

[&

Fig. 2. A data pipeline for extracting records (audio/video frames) from splits of com-
pressed input data. Split boarders (s1, s2) are adjusted (slx, s2x) based on key frames
discovered within the multiplexed data stream. The adjusted input splits together with
the container’s header information are fed into a decompressor. The extracted packets
are finally decoded into interpretable binary records and passed to the map function.

4 Implementation

4.1 Software Stack

The application has been implemented based on Apache Hadoop’s distributed
file system (HDFS) and MapReduce environment (release 0.21.0). For handling
media streams from Java, we utilize the Xuggler 3 open-source library, which
provides an very stable wrapper around FFmpeg’s libav libaries 4. In previous

3 http://www.xuggle.com/
4 http://www.ffmpeg.org/

versions of this application, other Java media frameworks and bindings to native
applications have been evaluated (including JMF, FMJ, Theora-Java, FOBS,
Jffmpeg, FFMPEG-Java). It is in general desirable to base an applications for
user-defined data processing on a high-level language like Java as this can greatly
simplify the readability of the code. Due to dependencies to native libraries, the
video processing application demands the installation of FFmpeg on every cluster
node. Other dependencies may result from the incorporation of native special
purpose libraries like e.g. for optical character recognition. It is important to
note that virtualization and cloud technology provide a well suited model for
efficiently deploying such environments within large data centers on demand. In
previous work, we have instantiated a cluster with >150 video processing nodes
on Amazon’s utility cloud ® based on a single virtual machine image having the
entire software stack pre-installed.

4.2 Application Design

In the following, we provide an overview of the application design, and briefly
describe some of the application’s basic abstractions and their implementation.

AV Splittable Compression Codec One of the most critical issues when
dealing with the parallel processing of large files is handling compression. A com-
pression codec provides a helpful abstraction allowing one to easily read/write
from/to compressed data streams. Hadoop provides codec implementations for
a set of file compression codecs including gzip, bzip2, LZO, and DEFLATE as
part of its API. It is however critical to consider if a file format supports split-
ting for processing it with MapReduce. Hadoop utilizes a specific interface
called SplittableCompressionCodec to denote codecs that support the com-
pression/decompression of streams at arbitrary positions. Codecs like bzip2 that
implement this interface are highly valuable in this context as they support the
partitioning and parallel processing of compressed input data. We have imple-
mented AV Splittable Compression Codec, a class that supports the compression,
decompression, and splitting of audiovisual files.

AV Input Stream In order to split a binary stream, it must be possible to
detect positions where the data can be decomposed into blocks. This class imple-
ments a splittable input stream for compressed audiovisual content. As shown
in figure 2, split boundaries must be repositioned to key frame positions by the
codec in order to support decomposition of the data stream. Hence, during exe-
cution the reader must be advanced from an arbitrary position within the data
stream to the next key frame position. This is done by utilizing a key frame
index that is automatically generated from the container prior to the execution.
In order to produce an interpretable data stream from the adjusted file split, the
stream reader appends the container’s header information (kept in memory) to
each data portion. It is however not required to read the entire split into memory
as the payload is directly read from HDFS.

5 http://aws.amazon.com

Frame Record Reader Record readers are plugged into the input file format
of a particular MapReduce job. They typically convert the data provided by the
input stream into a set of key/value pairs (called records) that are processed
within the map and reduce tasks. We utilize the concept of packets, which are
logical data entities read and uncompressed from the input sequences. Packets
are subsequently decoded (optionally error checked and resampled) into objects
of a specific data type. For example, a frame record reader can utilize the above
described concepts in order to obtain audio/video frames from an generic input
split.

Output Generation Record writers provide the inverse concept to record
readers. They write the delivered job outputs in the form of key/value pairs to
the file system. Output files are produced per reduce task and might have to be
merged in a postprocessing stage. To continue the example above, a frame record
writer writes audio/video frames to an instance of AV Output Stream which can
be obtained from AV Splittable Compression Codec. The codec implementation
is customizable regarding the compression formats used to encode the diverse
data tracks.

5 Evaluation

In the following, we provide an evaluation that investigates the impact of input
file size and compression on the application’s performance and scalability.

5.1 Experiment Setup

The evaluation has been conducted on a dedicated testing infrastructure that
comprises a front-end and five worker nodes (Single Core 1.86GHz Intel CPU,
1.5GB RAM) connected through Gigabit Ethernet. For benchmarking, the video
processing application was configured to decode every video frame of an input
file and traverse the content for a given time period. Although the application
supports a very large range of formats due to its bindings to FFmpeg, we have
utilized a set of homogeneous input files in order to generate comparable results.
The files (shown in table 5.1) differ in bitrate and duration only and utilize mp3
(48KHz) and MPEG4 (25fps) as compression formats and AVI as a container.
The GOP (Group of Pictures) length basically determines the amount of suc-
cessive pictures between two key frames, which also influences the achievable
compression ratio. The application has been executed for each file sequentially
as well as on 1-5 cluster nodes.

Encoding Input File
GOP length bitrate[1800 sec| 3600 sec| 5400 sec| 7200 sec
12380 kb/s| 535 MB|1071 MB|1607 MB|2141 MB
10| 436 kb/s| 98 MB| 196 MB| 294 MB| 393 MB
100| 341 kb/s| 76 MB| 153 MB| 230 MB| 306 MB

Table 1. Payload data file sizes are depending on encoding and duration.

5.2 Results and Improvements

The left part of table 2 shows performance results that have been obtained using
a static input split size that corresponds to the file system’s block size (i.e. the
default configuration). The results show execution times that increase horizon-
tally (with growing duration) as well as vertically (with growing compression
rate). Here, a higher compression rate of the payload data has a significantly
negative impact on the application throughput. This effect however is caused by
an imbalanced workload distribution, as the content is split and distributed using
data chunks of a fixed size. This strategy however provides only a reasonably fair
workload distribution if every frame is encoded as a key frame (GOP length=1).
Compression algorithms like motion compensation disrupt this even density of
information within the byte stream. Hence, the size of a byte stream does not
provide an adequate measure for the workload it imposes on the application.
For video content, it is therefore important to balance the workload (i.e. the
uncompressed frames) based on GOPs rather than fixed chunk sizes. We have
implemented a simple algorithm that adjusts the split size based on the average
GOP, block, and frame size, in order to achieve a better workload distribution.
The results in the right part of table 2 were obtained using the dynamic input
split adaption algorithm. Here, we see an overall improved throughput rate that
is independent of the volumes of content. Also, higher compression rates slightly
improve the throughput due to the smaller input file size. Figure 3 shows the
application performance on different numbers of nodes. In the tested setting,
the application showed almost linear speedup, allowing one to efficiently reduce
response times by increasing the number of worker nodes, e.g. important when
processing content on demand and/or under SLA constraints.

GOP|[1800 sec|3600 sec|5400 sec|7200 sec| |GOP|[1800 sec|3600 sec|5400 sec|7200 sec
1| 921/49|1720,/52|2623/51| 3480/51 1| 814/55|1624/55| 2441,/55| 3333/54
10| 3686,/12| 3853/23| 3890/35| 4400/41 10| 772/58|1499/60|2236/60|2988/60
100| 4910/9/4923/18|4911/27|4944/36 100| 754/60|1440/62|2119/64|2830/64

Table 2. Execution time [sec.] and throughput [frames per second] on 5 nodes with
static split size (left) and dynamic split size adaption (right)

6 Conclusion

We have presented an application for the parallel processing of binary media ob-
jects based on the MapReduce programming model. The implementation relies
on Apache Hadoop and implements the required concepts to generate mean-
ingful records like audio/video frames, which can be processed using common
Java abstractions and user-defined logic. Furthermore, we provide insights on
interpreting the compressed payload data, as this is highly important in order to
assess and balance the application’s workload. We motivate the employment of
this approach in order to achieve minimal response times for Internet-accessible
applications that maintain audiovisual content.

20000 ‘

A 120 min. (distr.) | 4
—o 90 min. (distr) |
361 60 min. (distr) | 4

15000‘7 -0 0min. (@str) | Avg. Avg.
[#n|Speedup|Efficiency
z % 1 0,99 99,8%
g 2 1,90 952%
@ 3 2,89 96,2%
i 4 3,74 93,6%
5000 —
5 5 4,62 92,4%

(

[N
N
IN
o

0 | | 1
number of nodes

Fig. 3. Application performance for different input files on 1-5 worker nodes.

References

1. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51, 107-113 (January 2008)

2. Dean, J., Ghemawat, S.: Mapreduce: a flexible data processing tool. Commun.
ACM 53(1), 72-77 (2010)

3. Ekanayake, J., Pallickara, S., Fox, G.: Mapreduce for data intensive scientific anal-
yses. In: eScience, 2008. eScience ’08. IEEE Fourth International Conference on.
pp. 277 —284 (2008)

4. Gunarathne, T., Wu, T.L., Qiu, J., Fox, G.: Cloud computing paradigms for pleas-
ingly parallel biomedical applications. In: Proc. of the 19th ACM Int. Symposium
on High Performance Distributed Computing. pp. 460-469. HPDC ’10 (2010)

5. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-
parallel programs from sequential building blocks. In: Proc. of the 2nd ACM
SIGOPS/EuroSys European Conf. on Computer Systems 2007. pp. 59-72 (2007)

6. Moretti, C., Bui, H., Hollingsworth, K., Rich, B., Flynn, P., Thain, D.: All-pairs:
An abstraction for data-intensive computing on campus grids. IEEE Transactions
on Parallel and Distributed Systems 21, 33-46 (2010)

7. Pereira, R., Azambuja, M., Breitman, K., Endler, M.: An architecture for dis-
tributed high performance video processing in the cloud. In: Proc. of the 2010
IEEE 3rd International Conference on Cloud Computing. pp. 482-489. CLOUD
’10 (2010)

8. Schmidt, R., Rella, M.: Considering data locality for parallel video processing.
ERCIM News 2010(83) (2010)

9. Schmidt, R., Sadilek, C., King, R.: A service for data-intensive computations on
virtual clusters. Intensive Applications and Services, International Conference on
0, 28-33 (2009)

10. Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P., Zhang, N., Antony, S., Liu,
H., Murthy, R.: Hive - a petabyte scale data warehouse using hadoop. In: Data
Engineering (ICDE), 2010 IEEE 26th International Conference on. pp. 996 —1005
(2010)

11. Warneke, D., Kao, O.: Nephele: efficient parallel data processing in the cloud. In:
Proc- of the 2nd Workshop on Many-Task Computing on Grids and Supercomput-
ers. pp. 8:1-8:10. MTAGS ’09 (2009)

