
ACOMPONENTPLUGINMECHANISM ANDFRAMEWORK
FOR APPLICATION WEB SERVICES

Rainer Schmidt, Siegfried Benkner, and Maria Lucka
Department of Scientific Computing
University of Vienna
Nordbergstrasse 15/C/3
1090 Vienna, Austria

rainer@par.univie.ac.at

Abstract We present the architecture and application of VGE-CCA, a distributed com-
ponent framework that is layered atop a Web service based Grid environment.
The framework implements the CCA component model and utilizes the Vienna
Grid Environment (VGE) as underlying middleware. In this paper, we intro-
duce the concept of application specific component libraries that can be easily
plugged into the container. Moreover, we report work on coupling distributed
and concurrently running application components that are dynamically assem-
bled and executed as single application composites by clients. For co-scheduling
the various application components, the system makes use ofadvance resource
reservation as provided by the VGE QoS module. Furthermore,we discuss the
component and composition model as well as its application to a service-oriented
architecture.

Keywords: Grid, Web Services, Service-oriented Architecture, Component Architecture



2

1. Introduction

Grid technology provides tools and infrastructures for thecoordinated shar-
ing of computational resources that are physically distributed, spanning multi-
ple administrative domains. The adoption of Web service technology for Grid
computing environments has been a major research issue in this area, provid-
ing defined access mechanisms for distributed resources based on Web ser-
vice standards like XML, SOAP, and WSDL. Service-based Grids typically
comprise of various collaborating services providing capabilities like security,
information, data or resource management as described by the OGSA [8] spec-
ification. An important challenge in this area is the development of software
engineering methods for Grid applications that are built upon a multitude of
services as well as programming models that hide the complexity of the under-
lying environment.

Component technology provides a powerful way for constructing complex
software systems by decoupling software implementation from application as-
sembly. Several successful frameworks for developing distributed scientific
application exists (e.g. XCAT3 [13], ProActive [2], ICENI [9], Paco++ [15],
MOCCA [14]) implementing and extending a variety of component models
including Corba, CCA, Fractal, or Web services. The Common Component
Architecture [5] (CCA) specification defined by the CCA Forum[6] is specif-
ically designed for the development of large scale scientific applications. The
architecture focuses on the integration of existing scientific software libraries
into a framework for component creation, introspection, and composition, which
fits well into the Web/Grid services model as described in [11].

In this paper, we present the architecture and application of VGE-CCA,
a distributed CCA implementation that allows to develop, deploy, and as-
semble component-based high performance applications fora Web service
based Grid environment. The framework builds upon the Vienna Grid Envi-
ronment [4] (VGE) - a Grid infrastructure for secure, automatic and QoS aware
provision of compute-intensive applications running on parallel hardware over
standard Web service technology. We introduce a mechanism allowing to ex-
tend VGE components using application specific software libraries that can be
easily plugged into the container. Furthermore, we report work on coupling
distributed and co-scheduled application components thatare dynamically as-
sembled by clients and run as single application composites. The following
sections provide an overview of the architecture and implementation of the
VGE-CCA framework as well as the underlying Grid middleware. We discuss
the component and composition model as well as its application to a service-
oriented architecture. Finally, we present conclusions and future work.



VGE-CCA Application Components 3

2. The VGE Grid Infrastructure

2.1 Architectural Overview and Technologies

The Vienna Grid Environment [4] is a service-oriented Grid infrastructure
for the on-demand provision of HPC applications as Grid services and for the
construction of client-side applications that access Gridservices. The VGE
service provision framework is based on a generic application service model
and automates the provision of HPC applications as servicesbased on stan-
dard Web service technology such as SOAP, WSDL, WS-Addressing, and WS-
Security. VGE supports a flexible QoS negotiation model where clients may
dynamically negotiate QoS guarantees on execution time andprice with po-
tential service providers. A VGE Grid usually comprises multiple services and
clients, one or more service registries for maintaining a list of service providers
and the services they support, and a certificate authority for providing an op-
erational PKI infrastructure and end-to-end security based on X.509 certifi-
cates. VGE is being utilized and evaluated in the context of the EU Project
GEMSS [3] and @neurist [1] which develop Grid infrastructures for medical
simulation services and data access.

2.2 Services provided by VGE Containers

VGE generic application services are configurable softwareunits that pro-
vide common operations for remote job management, data staging, error re-
covery, and QoS negotiation.

Thefile handling serviceprovides operations for uploading and download-
ing input/output data based on file transfer via SOAP attachments. Support for
direct data exchange between services is provided by correspondingpushand
pull operations. Thejob execution serviceprovides operations for launching
and managing remote jobs by interfacing with acompute resource manager.
VGE does not provide means for clients to send job scripts to the server and
only allows application providers to control which scriptsare to be executed
on the respective machines. TheQoS negotiation serviceenables clients to
dynamically negotiate with VGE services on a case-by-case basis on various
QoS guarantees such as execution time and price. Resulting QoS contracts
between service providers and clients are formulated as WebService Level
Agreements (WSLA) and go along with advance resource reservations. The
monitoring service generates XML structured data regarding the application
status and information gathered by individual monitoring scripts. Theerror
recovery serviceprovides support for checkpointing, restart, and migration, if
supported by the application.



4

3. The Component and Composition Model

Scientific component frameworks implement and extend a variety of compo-
nent models including Corba, CCA, Fractal, or Web services.A distinguishing
aspect of existing component frameworks is the way they implement and ex-
ploit the various concepts of the component model. Another important design
issue is the integration and leverage of a component framework with respect
to the capabilities of the underlying system architecture.In the following, we
briefly describe the component model and mechanisms implemented by the
VGE-CCA framework.

3.1 Service-Oriented Architecture

The VGE-CCA component framework provides an abstraction layer and
functionality that resides atop a Service-Oriented Architecture (SOA). This
layer allows the construction of distributed Grid applications based on CCA
mechanisms and transparently utilizes the underlying Web services layer. A
SOA provides essential benefits such as loose coupling, location and imple-
mentation transparency. Well defined sequences of service invocations used to
control remotely executing applications can be specified and executed using
workflow representation and enactment techniques. VGE-CCAimplements
mechanisms that extend the service-oriented programming model allowing to
directly interlink Web service components along accepted and provided inter-
faces, independently from workflow orchestration. The approach is powerful,
enhancing VGE towards dynamic component interaction, data-flow, and the
coupling of co-scheduled application components.

�

� � ��

��

���

��� ���

	
����� 	�
�

���� 	�
�

����� ��������

Figure 1. a) Independent Web Service b) RPC-based Component Interaction c) Event-based
Application Coordination

3.2 Handling State and Composition

Figure 1 (a) depicts a Web service viewed as an encapsulated piece of soft-
ware providing service through a typed interface (provides port). The software
component may expose one or more interfaces, each defining a contract con-
taining a set of operations together with binding information used by clients to



VGE-CCA Application Components 5

invoke the service over a network. VGE-CCA extends this model by applying
the concept of port dependencies allowing a Web service to express depen-
dencies on services provided by other components based on defined interfaces
calleduses ports. A connection between two components, drawn by a client
application developer, results in placing a handle to the selected service port
into the connection table of the component requesting a remote port.

If a service maintains state, it is essential to establish a context between
the requestor and the actual resource represented by a component. The way
the component framework handles component instantiation is therefore an im-
portant aspect. In the context of Grid and Web services, instantiation can be
realized by providing an application factory service as pointed out by Gannon
et al. [10]. In VGE, we pursue a slightly different approach by maintaining a
conversational identifier that is mapped to the respective application instance
created and managed by the application service. In our model, stateless com-
ponents may provide services (e.g. security) to other components but usually
do not exhibit dependencies.

3.3 Types of Composition

VGE services encapsulate parallel applications and provide generic inter-
faces for controlling the execution of a component (scheduling, executing,
monitoring) as well as operations for handling the data-flowbetween com-
ponents (upload, download, data push). VGE services are stateful and multi-
threaded creating a client context by maintaining a conversational identifier
stored within the SOAP message header using WS-Addressing.The VGE-
CCA framework provides libraries and services that extend the application ser-
vices with the required mechanisms for component-based composition. More-
over, the framework provides a plugin mechanism that supports the develop-
ment and deployment of individualapplication component libraries(clibs)
(Section 4.1.1) encapsulating application specific logic,ports and dependen-
cies. The current VGE-CCA implementation supports different types of com-
position which are explained in the following paragraphs:

Sequential Data-Flow: VGE components support data-flow by port connec-
tions allowing to directly stage i/o data between services (Figure 1 (b)). In
such workflow scenario, the output of a computation typically serves as input
for the following ones, for example an image reconstructionthat is followed
by a visualization. Data connections are explicitly controlled by the user and
invoked through a correspondingpushoperation. A component may have data
connections to multiple services which can be monitored andexecuted concur-
rently.



6

Coupled Parallel Applications: The clibs plugin mechanism provides the
required functionality to transform applications runningon different HPC com-
puting resources into actively interacting components which can then be launched
by clients as one composite application. The application components may be
coordinated through asynchronous message exchange using the signal inter-
face (Figure 1 (c)). An example using distributed Ant colonyoptimization is
described in section 4.1.1. The event mechanism is currently implemented as
a one-to-many CCA port connection. For future versions, we plan to incor-
porate a notification-based system like WS-Notification. For co-scheduling
concurrently running component instances, we utilize scheduling and advance
resource reservation as provided by the VGE QoS module.

Stateless Service Dependencies: Within VGE Grids, stateless services are
typically “supporting infrastructure elements” providing services like security
or data management. Accessing such services usually does not require a client
to use any session or scheduling mechanisms. A dependency onan infras-
tructure service may be explicitly visible to a client or implicitly handled by
the component and configured descriptively at service deployment time (e.g.
auditing, security).

4. The VGE-CCA Component Framework

VGE-CCA implements a distributed component framework on top of a Web
service based Grid of HPC application services as well as general infrastructure
services such as security and information. A key design goalof VGE-CCA was
the preservation of the service-oriented architecture andthe provision of com-
ponent extensions, without conflicting the Web services model. VGE-CCA
provides a set of libraries that can be used to extend Web/Grid services as
well as a set of infrastructure elements providing servicesto components and
client runtimes. The software design allows to optionally install the VGE-CCA
distribution without requiring to change code of existing services and thereby
preserving the original interfaces and functionality. On the client-side, VGE-
CCA provides support for component based application construction as well
as workflow steering and execution.

4.1 Coupling Co-Scheduled Application Components

4.1.1 Pluggable Component Libraries (CLIBS). VGE-CCA provides
a mechanism that allows to create individual software libraries that are specif-
ically tailored to an underlying application. The component libraries (clips)
can be plugged into VGE application services and are automatically deployed
with the service. By default, VGE-CCA components provide interfaces for ap-
plication, data, and QoS management (cf. VGE) as well as aBuilder Service



VGE-CCA Application Components 7

��� ����
����	
�

��� ����

���� ��
���
���� 	���

�
���
 ��
���
�����
�� 	���

���
�
���
�

�����
���	


���
���
�

��	
���

	

�
���

��������� �����

��� �����
�	

� ����
���������

�������� �
����������

����

	

� �
������
����� ��
�����

�������� 
��������

�!��� ������

��"
������
���#� ��
�������

Figure 2. Design of a VGE-CCA component

for component creation, and connection (cf. CCA).Clibs are used to add in-
dividual ports, dependencies, or application specific logic to services running
VGE-CCA. Moreover, the plugin mechanism allows to extend the behavior of
existing services at defined entrance points, for example totrigger an activity
right before/after a certain file is uploaded to the service.Application libraries
are developed by subclassing a predefined component class that provides the
mechanisms and handles required to augment the service and inject the desired
behavior. The individual component libraries are descriptively specified and
automatically loaded into the container at deployment time. Figure 2 shows
a schematic design of a VGE-CCA component including VGE and CCA li-
braries as well as application and service specificclibs. Coordination among
co-scheduled VGE components is distributed and currently handled using a
simple signaling mechanism. The current implementation therefore extends
the port connection mechanism towards supporting connections from oneuses
to n providesports. Message generation and distribution is handled transpar-
ently by the framework.

4.1.2 Example: Ant Colony Optimization. Consider an application
using a savings-based ant colony optimization (ACO) algorithm to solve a
vehicle routing problem [7]. The application implements a multi-colony ap-
proach where several colonies of ants cooperate in finding good solutions. On
the fine-grained level, each colony of ants is partitioned into n (number of
processors) subcolonies that share the same pheromone matrix. The goal of
parallelizing the ACO algorithm is twofold: to speed up the execution and to
improve the solution quality. In order to aggregate multiple computing clus-
ters, the application has been distributed using a custom ant component library.
The VGE component was extended in order to start a daemon thatkeeps track
of the current local optimum, written to a file by the application. If a colony
calculates a better solution than the global optimum the current solutions and



8

parts of the pheromone information are multicasted to connected components
using thesignal() interface. The coupling between the individual ant colonies
is loose allowing colonies to be added or removed during runtime.

The VGE-CCA client API targets to provide useful abstractions that al-
low component-based application construction by hiding the complexity of
the distributed system. Components are co-scheduled usingQoS constraints
at creation time resulting in an advance resource reservation as provided by the
VGE QoS module. Connections within composites are peer-based and inter-
action driven, which reduces complexity at the workflow level. In the case of
ACO, the client developer constructs an application by interconnecting multi-
ple distributed ant colony components. The experiment can then be run based
on a single composite entity. The code snippet in LISTING 1 shows how the
client API is used to create a (simple) ACO composite. Operations for runtime
steering and monitoring provided by VGE application services (e.g. start(),
getStatus()) can be used likewise with the application composite.

//Listing 1: Ant client snippet
VgeComponent ant1 = ComponentFactory.create(coid1); //...
VgeComponentGroup antComposite =

new VgeComponentGroup(ant1, ant2, ant3);
antComposite.upload(vrp_infile);
antComposite.start(); //...

4.2 The Software Distribution

In the following, we provide a short description comprisingthe basic build-
ing blocks of the VGE-CCA distribution. For a detailed description of imple-
mented CCA mechanisms the reader is referred to [16].

A library package implementing theservice-side CCA framework (Fig-
ure 2) is used to equip the application service with additional interfaces for
remote component registration (component interface), creation and connection
(builder interface). Additionally, the Web service is provided with a local CCA
serviceslibrary, a connection table, as well as the component pluginmecha-
nism used to create and insert individual application components. The CCA
libraries are in general used by the application component but may also be
used by the individual service implementation to locate anddirectly connect to
infrastructure services, e.g. auditing, or certificate revocation list retrieval.

A component registryrealized as Web service implements the remote por-
tion of the CCAservicesinterface. Components register the ports they provide
as well as dependencies on other components by descriptors containing the
required information for discovering and utilizing the component (e.g. inter-
face descriptors, proxy class, associated properties). Moreover, aprovidesport
may also be associated with a proxy implementation that can be uploaded to
the proxy registry and dynamically retrieved by componentsor clients. The



VGE-CCA Application Components 9

registry service allows for dynamic service discovery and delivers the infor-
mation required for component introspection (e.g. supported ports, underlying
application, QoS attributes) and for component interaction (component handle,
binding information) back to the requestor.

The programming environment is provided as a versatile Javaclient API
that supports the creation and execution of distributed applications. Compo-
nents may be described and created based on an unique identifier or an ab-
stract component description. Applicable services are located and selected at
runtime using the registry service. Client assemblies are created by intercon-
necting pairs of compliantusesandprovidesports, which results in the estab-
lishment of peer connections between the services. The API is extensible and
has a layered design supporting messaging and security, general programming
constructs such as basic CCA types and mechanisms, as well asspecialized
application components and composites.

A negotiation broker service is utilized during the component creation
phase to locate and create components that meet a certain Quality of Service
level. The broker service utilizes the capabilities provided by the VGE QoS
module to negotiate with multiple services on the various QoS guarantees. The
VGE-CCA client environment integrates QoS support by providing means for
qualitatively describing a VGE component. The negotiationand selection of
an appropriate component is transparently delegated to thenegotiation broker.
A successful QoS negotiation goes along with an advance reservation of the
required resource, i.e. the number of nodes on a cluster within a certain time
frame, which is an essential mechanism used by the frameworkto co-schedule
coupled application components.

5. Conclusion and Future Work

VGE-CCA serves as a framework for constructing Grid applications from
native application components provided by HPC applicationservices. We in-
troduced a plugin mechanism for application specific component libraries al-
lowing service providers to specifically tailor VGE services to the underlying
application. A port-based connection mechanism and distributed coordination
allow to couple co-scheduled application components whichare represented as
single composite entities on the client side. The current VGE-CCA distribu-
tion relies on Java and Web services technology. All Web service interfaces and
types are described using XML schema which allows bindings to clients and
components in other programming languages, such as C++ or Microsoft .Net.
For future work, we plan to work on interoperability with other distributed
CCA frameworks, such as XCAT-C++ [12] or LegionCCA.

References



10

[1] The AneurIST Project.www.aneurist.org/.

[2] F. Baude, D. Caromel, and M. Morel. From Distributed Objects to Hierarchical Grid
Components.International Symposium on Distributed Objects and Applications (DOA),
Catania, Italy, 2003.

[3] S. Benkner, G. Berti, G. Engelbrecht, J. Fingberg, G. Kohring, S. Middleton, and
R. Schmidt. GEMSS: Grid Infrastructure for Medical ServiceProvision. Journal of
Methods of Information in Medicine, 44, 2005.

[4] S. Benkner, I. Brandic, G. Engelbrecht, and R. Schmidt. VGE - A Service-Oriented Grid
Environment for On-Demand Supercomputing. InProceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing, November Pittsburgh, PA, USA, 2004.

[5] D. E. Bernholdt et al. A Component Architecture for High-Performance Scientific Com-
puting. Intl. J. High-Perf. Computing Appl., 2006.

[6] The Common Component Architecture Forum.http://www.cca-forum.org.

[7] K. Doerner, R. Hartl, S. Benkner, M. Lucka.Cooperative Savings based Ant Colony Op-
timization - Multiple Search and Decomposition Approaches, Parallel Processing Letters,
2005.

[8] I. Foster, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist,
R. Subramaniam, J. Treadwell, and J. V. Reich. The Open Grid Services Architecture,
Version 1.0. GGF OGSA Working Group (OGSA-WG), 2005.

[9] N. Furmento, J. Hau, W. Lee, S. Newhouse, and J. Darlington. Implementations of a
Service-Oriented Architecture on Top of Jini, JXTA and OGSI. In Second Across Grids
Conference, 2004.

[10] D. Gannon, R. Ananthakrishnan, S. Krishnan, M. Govindaraju, L. Ramakrishnan, and
A. Slominski. Grid Computing: Making the Global Infrastructure a Reality, chapter 9,
Grid Web Services and Application Factories. Wiley, 2003.

[11] D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi, R. Ananthakrishnan, F. Bertrand,
K. Chiu, M. Farrellee, M. Govindaraju, S. Krishnan, L. Ramakrishnan, Y. Simmhan,
A. Slominski, Y. Ma, C. Olariu, and N. Rey-Cenvaz. Programming the Grid: Distributed
Software Components, P2P and Grid Web Services for Scientific Applications.J. Cluster
Computing, 5(3):325–336, 2002.

[12] M. Govindaraju, M. R. Head, and K. Chiu. XCAT-C++: Design and Performance of a
Distributed CCA Framework.The 12th Annual IEEE International Conference on High
Performance Computing (HiPC) 2005, Goa, India, December 18-21.

[13] S. Krishnan and D. Gannon. XCAT3: A Framework for CCA Components as OGSA
Services. InProceedings of the 9th International Workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments (HIPS 2004). IEEE , 2004.

[14] M. Malawski, D. Kurzyniec, and V. Sunderam. Mocca - Towards a Distributed CCA
Framework for Metacomputing. InIPDPS ’05: Proceedings of the 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’05), page 174.1, 2005.

[15] C. Prez, T. Priol, A. Ribes. Paco++: A Parallel Object Model for High Performance
Distributed Systems.37th Hawaii Intern. Conf. on System Sciences (HICSS-37), 2004.

[16] R. Schmidt, M. R. Head, M. Govindaraju, M. J. Lewis, and S. Benkner. Design and
Implementation Choices for Implementing Distributed CCA Frameworks. in GECO-
COMPFRAME06: Workshop HPC Grid programming Environments and COmponents
and Component and Framework Technology in High-Performance and Scientific Com-
puting (at HPDC-15), Paris, France, June 2006.


