
1

Component based Applications Programming within a Service-Oriented Grid

Environment

Rainer Schmidt, Siegfried Benkner, Ivona Brandic, Gerhard Engelbrecht

Institute of Scientific Computing, University of Vienna

Nordbergstrasse 15/C/3, A-1090 Vienna, Austria

email: rainer@par.univie.ac.at

Extended Abstract

I. Introduction

We present an approach and prototype implementation

that applies a component based programming model to a

service-oriented computational Grid environment. Our sys-

tem is based on the Vienna Grid Environment (VGE) [1],

a Grid infrastructure for automatic HPC application pro-

vision over standard Web service technology. VGE ser-

vices provide generic interfaces for remote job execution,

monitoring, error recovery as well as for application level

QoS support. A VGE Grid typically comprises multiple

services and clients, one or more service registries as

well as a certificate authority. VGE client applications

are usually written using a Java API which allows the

programmer to interact with remote VGE services. The

VGE service provision framework is currently being uti-

lized in the GEMSS Project [2] for the Grid provision of

advanced medical simulation services which incorporate

compute intensive methods such as Finite-element Mod-

eling, Monte Carlo simulation, and Computational Fluid

Dynamics. Key aspects of VGE include negotiable QoS

support for time-critical service provision, flexible support

for business models as well as end-to-end security. Most

of these applications consist of various steps of execution

for example mesh generation, data analysis, or visualiza-

tion which can be deployed separately using VGE. VGE

client applications are currently being constructed using

a service-oriented programming model (registry-lookup,

XML-RPC). By integrating a component based model we

would like to provide the client with a simple plug-and-

play environment (e.g. allowing visual composition) and

move the handling of the service-oriented environment

away from the client environment towards a component

framework.

It is our goal to provide a component-based program-

App.

Fig. 1. Providing aComponentAbstraction for

Application Grid Services

ming model on top of a service-oriented infrastructure that

allows programmers to compose client-side applications

from deployed VGE components (Figure 1). We therefore

incorporated several Common Component Architecture

(CCA) based mechanisms into the system. In this paper we

will briefly describe the CCA based component framework,

the client programming environment and the mechanism

used to integrate Web services with the framework. We

further discuss to which extend such a component model

can be applied to the functionality provided by VGE.

Due to space limitations we omit a detailed description

of CCA [3].

II. Related Work

Component based distributed programming models

such as CCM [4], EJB [5] or DCOM [6] are widely used

standards mostly in the context of commercial applica-

tions. The work presented in [7] uses parallel CORBA

components within computational Grids. A hierarchical

component model for a parallel and distributed framework

is presented in [8]. CCA defines a component model

for scientific applications wich is utilized by various

projects: The Ccaffeine framework [9] focuses on support-

ing high-performance MPI based components using Babel

for language interoperability. XCAT [10] is a distributed



framework that integrates CCA with Grid services e.g.

OGSI [11]. It uses XSOAP [12] for communication and

can use ssh or Globus GRAM [13] for remote component

instantiation. Further distributed CCA based frameworks

like SCIRun2 [14], LegionCCA [15], Mocca [16], or

DCA [17] address diverse aspects related to problem

solving, metacomputing, or component engineering.

III. Generic Application Services

At its core, a VGE application service follows a generic

application service model and exposes a native application

as a service to be accessed by multiple remote clients

over the Internet. The application service provides common

operations for remote job management, data staging, and

optional operations for error recovery and QoS support.

Figure 2 shows the interfaces and operations a VGE service

provides.

The operations upload and download are used for

uploading of input data to a service and downloading

of output data. The operation push is provided for data

staging between different services. The execution of a

remote application can be initiated by calling start and

stopped by calling kill. The operation getStatus allows

the client to download an application-specific status file.

The operations provided in the error recovery interface

enable clients to control checkpointing and restarting of

applications. The operations of the interface QoS are used

during QoS negotiation. The behavior of these operations

is customized for a specific application by means of an

XML application descriptor.

upload()

download()

start()

kill()

pull()

push()

getStatus()

ErrorRecovery

<<interface>>

checkpointUpload()

checkpointDownload()

restart()

requestQosOffer()

confirmQosOffer()

cancelQoSOffer()

<<interface>>

 JobHandling

ApplicationService

<<interface>>

QoS

Fig. 2. Generic Application Service

VGE makes use of open-source frameworks such as

Tomcat [18] and Axis [19] to provide HPC applications

over standard Web Service technology. For large file

transfers SOAP attachements are utilized. An operational

PKI infrastructure based on X.509 certificates provides

transport and message layer security.

IV. A Component Model for Grid Services

We aim to provide VGE services to client programmers

based on the CCA component model. We therefore use

CCA mechanisms like provides/uses ports, component

interface, framework services and builder service. We

currently do not implement the whole specification (e.g.

events) and further did some slight modifications on the

builder interface.

For integrating VGE application services with the com-

ponent model we implemented three additional software

packages. A distributed component framework that medi-

ates between service-orientation and the component model,

the service package provides interoperability between the

Web services and the component framework, the client

programming environment allows for component based

application construction.

A. General System Overview

Our infrastructure (Figure 3) aims to map a component

based application to services available in the Grid at run-

time. VGE application services are therefore represented

as components which can be accessed and interconnected.

S1
S2

S3

Component

Framework
Cmp 2

Cmp 1

(a) (a) (a) 

(b)

(c)

(d)

Client - Application

Fig. 3. General System Architecture

The component framework is implemented as Web

service and acts as broker between application demands

and available Grid services. We therefore extend the VGE

services with component interfaces for interacting with the

framework. The framework provides an interface for man-

aging component ports, and services for client application

construction. A service can register provided/used ports

with the framework as well as request them dynamically

(a) at execution time.

The client application may consist of several compo-

nents, which can be instantiated, connected and invoked.

The Builder service provided by the framework locates the

services on behalf of the client application at execution

time (b) and delivers runtime relevant service information

back to the involved entities (c) which allows them to

interact (d).



B. Providing VGE Services as Components

In CCA a component communicates with the com-

ponent framework over an additional interface, called

component interface. We therefore provide a library that

implements the component functionality (Figure 4) which

can be added easily to the Web Service by extending

the deployment descriptor. A configuration file is used

to specify meta-data on the wrapped scientific application

(name, version, I/O file format) as well as uses ports (e.g.

for data staging).

When such a Grid service is added to the pool of

components that is maintained by our framework it is

provided with a proxy, called services object in CCA, over

the component interface. This proxy allows the service to

manage provided and used port objects dynamically

(register, retrieve).

In order to exchange the complex, CCA defined data

types (e.g. Port, TypeMap, ComponentId), the current

prototype uses SOAP messages utilizing Java serialization

and Base64 encoding. Hence, the system represents an

application service as a component and each Web service

interface as a provides port. We have to note that this

mapping imposes a certain limitation if multiple provides

ports of the same type are exposed by one component as

described in [20].

Fig. 4. Service - Component Framework Inter-

action

C. Remotely Accessible Component Framework

The Component Framework is implemented as Web

service and provides the component management service,

a simple Builder service and a Java proxy repository.

The proxy repository is used to provide the client

environment with a high flexibility concerning component

specific libraries. The idea is to enable client applications

to stay compliant with different versions of VGE services,

dynamically retrieve proxy updates, and also be able to

incorporate non-VGE services. We therefore extended the

Java classloader mechanism with a dynamic proxy pattern

that allows the client to access remote libraries (Figure 5):

Client FW Service

createInstance()

Component

getProxy()

Proxy

execute()

Fig. 5. Application Execution using Dynamic

Proxy Pattern

If a port is registered with the component framework it

can be associated with a proxy implementation which can

be uploaded to the framework. At execution time the client

environment contacts the framework services in order to

fill the component representations with substantial runtime

information (component id, service endpoint, proxy class

name, class loader). Invoking a method on a port causes

the runtime engine to generate a call from the client to

a service using the local code base. If a fault occurs or

the component is unknown to client-side code repository,

the Java classloader dynamically retrieves an appropriate

proxy file from the framework where the component is

registered. This mechanism of interface based service

discovery and proxy lookup which we have applied for

Web services is well known from Jini [21] technology.

D. VGE Component based Application Program-
ming

If VGE services are represented as CCA components

every component looks equal as all services provide the

same generic interfaces. Every VGE service also has the

same dependency (uses port) to another VGE job handling

interface which is required for data staging operations. As

VGE services interoperate by exchanging files and don’t

use individual remote methods calls, all VGE components

are technically interoperable.

Components are identified by meta-data descriptions of

their underlying applications. The Builder Service, how-

ever does also consider the component interfaces when

creating an instance in order to allow adaptor components

to non-VGE services being incorporated.

For constructing composite applications our Builder

Service basically provides following methods to the client

environment:

createComponent: Requests a component from the

framework based on application-specific meta-data, as well



as optionally a set of provided interfaces and causes the

creation of a client session at the target resource. Compo-

nents should be created at the beginning of a program as

they could possible be not available and interrupt during

application execution.

getComponentPort: Retrieves a specified Java interface

from a component which can be invoked or connected to

a uses port.

connect: Connects two components based on match-

ing provides/uses ports. Using VGE services connect

causes a push operation.

destroyInstance: Removes the component instance

from the applicaton and invalidates the client session at

the resource.

The prototype implementation currently uses Java as

programming language for building composite applica-

tions. For future versions we plan to incorporate also a

scripting language together with a graphical representation.

V. Future Work

VGE components communicate by exchanging files

within the VGE infrastructure. In order to provide higher

interoperability between the native applications we cur-

rently work on abstractions for scientific datatypes which

serve as parameter types for provides and uses ports.

These datatypes may allow automatic conversion of di-

verse file formats used between the connected application

components.

Moreover we envision the provision of QoS aware

components by integrating mechanisms provided by VGE

that allow to negotiate on a Web service level agreement

between service provider and consumer.

VI. Conclusion

We presented an environment that adds the abstraction

of components to a Web service based Grid infrastructure.

The system is based on VGE, a service provision frame-

work for native HPC applications. We described a CCA

based framework that allows the dynamical integration and

management of VGE application services using Web ser-

vice technology. We further provide a client environment

which provides automatic library reconfiguration capabili-

ties and allows the construction of composite applications

based on the deployed application components.

References

[1] S. Benkner, I. Brandic, G. Engelbrecht, R. Schmidt. ”VGE - A
Service-Oriented Environment for On-Demand Supercomputing”,
Proceedings of the Fifth IEEE/ACM International Workshop on
Grid Computing (Grid 2004), Pittsburgh, PA, USA, November
2004.

[2] Gemss Project homepage. http://www.gemss.de.
[3] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L.

McInnes, S. Parker, and B. Smolinski. ”Toward a Common Com-
ponent Architecture for High-Performance Scientific Computing”
Proceedings of the High-Performance Distributed Computing Con-
ference, August 1999, pp. 115-124.

[4] CORBA Component Model, v3.0, OMG.
http://www.omg.org/technology/documents/formal/components.htm.

[5] Enterprise JavaBeans technology: http://java.sun.com/products/ejb.
[6] COM Component Object Model Technologies, Microsoft,

http://www.microsoft.com/com/default.mspx.
[7] S. Lacour, C. Perez, and T. Priol. ”Deploying CORBA Compo-

nents on a Computational Grid: General Principles and Early
Experiments Using the Globus Toolkit” In Wolfgang Emmerich and
Alexander L. Wolf, editors, ”Proceedings of the 2nd International
Working Conference on Component Deployment” (CD 2004), num-
ber 3083 of Lect. Notes in Comp. Science, Edinburgh, Scotland,
UK, pages 35-49, May 2004. Springer-Verlag.

[8] Francoise Baude, Denis Caromel, and Matthieu Morel. ”From
Distributed Objects to Hierarchical Grid Components” Interna-
tional Symposium on Distributed Objects and Applications (DOA),
Catania, Sicily, Italy, 3-7 November 2003.

[9] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E.Bernholdt,
J. A. Kohl. ”The CCA core specification in a distributed memory
SPMD framework” Concurrency and Computation: Practice and
Experience 14(5), 2002.

[10] Madhusudhan Govindaraju, Sriram Krishnan, Kenneth Chiu, Alek-
sander Slominski, Dennis Gannon, and Randall Bramley. ”XCAT
2.0: A Component-Based Programming Model for Grid Web Ser-
vices” Technical Report-TR562, Department of Computer Science,
Indiana University. Jun 2002.

[11] Foster, I., Kesselman, C., Nick, J., Tuecke, S. ”The Physiol-
ogy of the Grid: An Open Grid Services Architecture for Dis-
tributed Systems Integration”, Globus Project, 2002. Available at
http://www.globus.org/research/papers/ogsa.pdf

[12] XSOAP toolkit. http://www.extreme.indiana.edu/xgws/xsoap.
[13] The Globus Alliance. http://www.globus.org.
[14] Keming Zhang, Kostadin Damevski, Venkatanand Venkatachalap-

athy, and Steven Parker. ”SCIRun2: A CCA Framework for High
Performance Computing” in Craig E. Rasmussen, editor, Proceed-
ings of the 9th International Workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments, IEEE Computer
Society, 2004.

[15] Madhusudhan Govindaraju and Himanshu Bari and Michael J.
Lewis. ”Design of Distributed Component Frameworks for Com-
putational Grids” in ”Proceedings of the International Conference
on Communications in Computing (CIC)”, pages 160–166, June
2004.

[16] Maciej Malawski, Dawid Kurzyniec, and Vaidy Sunderam.
”MOCCA - Towards a Distributed CCA Framework for Metacom-
puting” in Proceedings of the 10th International Workshop on High-
Level Parallel Programming Models and Supportive Environments
(HIPS2005) (submitted), 2005.

[17] Felipe Bertrand and Randall Bramley. ”DCA: A Distributed CCA
Framework Based on MPI” in 9th International Workshop on High-
Level Parallel Programming Models and Supportive Environments,
Santa Fe, NM, Apr 2004.

[18] Apache Tomcat. http://jakarta.apache.org/tomcat/.
[19] Apache Axis. http://ws.apache.org/axis/.
[20] S. Krishnan, D. Gannon. ”XCAT3: A Framework for CCA Com-

ponents as OGSA Services” Proceedings of the Ninth International
Workshop on High-Level Parallel Programming Models and Sup-
portive Environments, April 2004, pp. 90-97.

[21] ”J. Waldo. The Jini Architecture For Network-Centric Computing”
Communications of the ACM, 42(7):76-82, July 1999.


